Orbital-free density functional theory: An attractive electronic structure method for large-scale first-principles simulations

W Mi, K Luo, SB Trickey, M Pavanello - Chemical Reviews, 2023 - ACS Publications
Kohn–Sham Density Functional Theory (KSDFT) is the most widely used electronic structure
method in chemistry, physics, and materials science, with thousands of calculations cited …

From DFT to machine learning: recent approaches to materials science–a review

GR Schleder, ACM Padilha, CM Acosta… - Journal of Physics …, 2019 - iopscience.iop.org
Recent advances in experimental and computational methods are increasing the quantity
and complexity of generated data. This massive amount of raw data needs to be stored and …

Artificial intelligence for science in quantum, atomistic, and continuum systems

X Zhang, L Wang, J Helwig, Y Luo, C Fu, Y **e… - arxiv preprint arxiv …, 2023 - arxiv.org
Advances in artificial intelligence (AI) are fueling a new paradigm of discoveries in natural
sciences. Today, AI has started to advance natural sciences by improving, accelerating, and …

Quantum chemical accuracy from density functional approximations via machine learning

M Bogojeski, L Vogt-Maranto, ME Tuckerman… - Nature …, 2020 - nature.com
Kohn-Sham density functional theory (DFT) is a standard tool in most branches of chemistry,
but accuracies for many molecules are limited to 2-3 kcal⋅ mol− 1 with presently-available …

The TensorMol-0.1 model chemistry: a neural network augmented with long-range physics

K Yao, JE Herr, DW Toth, R Mckintyre, J Parkhill - Chemical science, 2018 - pubs.rsc.org
Traditional force fields cannot model chemical reactivity, and suffer from low generality
without re-fitting. Neural network potentials promise to address these problems, offering …

Bypassing the Kohn-Sham equations with machine learning

F Brockherde, L Vogt, L Li, ME Tuckerman… - Nature …, 2017 - nature.com
Abstract Last year, at least 30,000 scientific papers used the Kohn–Sham scheme of density
functional theory to solve electronic structure problems in a wide variety of scientific fields …

Quantum machine learning for chemistry and physics

M Sajjan, J Li, R Selvarajan, SH Sureshbabu… - Chemical Society …, 2022 - pubs.rsc.org
Machine learning (ML) has emerged as a formidable force for identifying hidden but
pertinent patterns within a given data set with the objective of subsequent generation of …

Kohn-Sham equations as regularizer: Building prior knowledge into machine-learned physics

L Li, S Hoyer, R Pederson, R Sun, ED Cubuk, P Riley… - Physical review …, 2021 - APS
Including prior knowledge is important for effective machine learning models in physics and
is usually achieved by explicitly adding loss terms or constraints on model architectures …

wACSF—Weighted atom-centered symmetry functions as descriptors in machine learning potentials

M Gastegger, L Schwiedrzik, M Bittermann… - The Journal of …, 2018 - pubs.aip.org
We introduce weighted atom-centered symmetry functions (wACSFs) as descriptors of a
chemical system's geometry for use in the prediction of chemical properties such as …

Deep dive into machine learning density functional theory for materials science and chemistry

L Fiedler, K Shah, M Bussmann, A Cangi - Physical Review Materials, 2022 - APS
With the growth of computational resources, the scope of electronic structure simulations has
increased greatly. Artificial intelligence and robust data analysis hold the promise to …