[HTML][HTML] A review of uncertainty quantification in deep learning: Techniques, applications and challenges

M Abdar, F Pourpanah, S Hussain, D Rezazadegan… - Information fusion, 2021 - Elsevier
Uncertainty quantification (UQ) methods play a pivotal role in reducing the impact of
uncertainties during both optimization and decision making processes. They have been …

Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation

P Zhang, B Zhang, T Zhang, D Chen… - Proceedings of the …, 2021 - openaccess.thecvf.com
Self-training is a competitive approach in domain adaptive segmentation, which trains the
network with the pseudo labels on the target domain. However inevitably, the pseudo labels …

Model adaptation: Historical contrastive learning for unsupervised domain adaptation without source data

J Huang, D Guan, A **ao, S Lu - Advances in neural …, 2021 - proceedings.neurips.cc
Unsupervised domain adaptation aims to align a labeled source domain and an unlabeled
target domain, but it requires to access the source data which often raises concerns in data …

Hrda: Context-aware high-resolution domain-adaptive semantic segmentation

L Hoyer, D Dai, L Van Gool - European conference on computer vision, 2022 - Springer
Unsupervised domain adaptation (UDA) aims to adapt a model trained on the source
domain (eg synthetic data) to the target domain (eg real-world data) without requiring further …

Semantic image segmentation: Two decades of research

G Csurka, R Volpi, B Chidlovskii - Foundations and Trends® …, 2022 - nowpublishers.com
Semantic image segmentation (SiS) plays a fundamental role in a broad variety of computer
vision applications, providing key information for the global understanding of an image. This …

Rectifying pseudo label learning via uncertainty estimation for domain adaptive semantic segmentation

Z Zheng, Y Yang - International Journal of Computer Vision, 2021 - Springer
This paper focuses on the unsupervised domain adaptation of transferring the knowledge
from the source domain to the target domain in the context of semantic segmentation …

Self-supervised augmentation consistency for adapting semantic segmentation

N Araslanov, S Roth - … of the IEEE/CVF conference on …, 2021 - openaccess.thecvf.com
We propose an approach to domain adaptation for semantic segmentation that is both
practical and highly accurate. In contrast to previous work, we abandon the use of …

Dacs: Domain adaptation via cross-domain mixed sampling

W Tranheden, V Olsson, J Pinto… - Proceedings of the …, 2021 - openaccess.thecvf.com
Semantic segmentation models based on convolutional neural networks have recently
displayed remarkable performance for a multitude of applications. However, these models …

Instance adaptive self-training for unsupervised domain adaptation

K Mei, C Zhu, J Zou, S Zhang - … Conference, Glasgow, UK, August 23–28 …, 2020 - Springer
The divergence between labeled training data and unlabeled testing data is a significant
challenge for recent deep learning models. Unsupervised domain adaptation (UDA) …

Towards zero-shot scale-aware monocular depth estimation

V Guizilini, I Vasiljevic, D Chen… - Proceedings of the …, 2023 - openaccess.thecvf.com
Monocular depth estimation is scale-ambiguous, and thus requires scale supervision to
produce metric predictions. Even so, the resulting models will be geometry-specific, with …