Error prevalence in nids datasets: A case study on cic-ids-2017 and cse-cic-ids-2018

L Liu, G Engelen, T Lynar, D Essam… - 2022 IEEE conference …, 2022‏ - ieeexplore.ieee.org
Benchmark datasets are heavily depended upon by the research community to validate
theoretical findings and track progression in the state-of-the-art. NIDS dataset creation …

Optimizing cybersecurity attack detection in computer networks: a comparative analysis of bio-inspired optimization algorithms using the CSE-CIC-IDS 2018 dataset

H Najafi Mohsenabad, MA Tut - Applied Sciences, 2024‏ - mdpi.com
In computer network security, the escalating use of computer networks and the
corresponding increase in cyberattacks have propelled Intrusion Detection Systems (IDSs) …

[PDF][PDF] Towards Data-Driven Network Intrusion Detection Systems: Features Dimensionality Reduction and Machine Learning.

M Maabreh, I Obeidat, EA Elsoud, A Alnajjar… - Int. J. Interact. Mob …, 2022‏ - academia.edu
Cyber attacks have increased in tandem with the exponential expansion of computer
networks and network applications throughout the world. Fortunately, various machine/deep …

CNN-based intrusion detection software for network operating system environment

SAH Alazawi, HA Abdulbaqi… - Babylonian Journal of …, 2024‏ - mesopotamian.press
Cybersecurity represents an important challenge specific to digital technology in the modern
world, and is of vital importance for reducing or even preventing the impact of cybercrime …

[HTML][HTML] Enhanced Hybrid Deep Learning Models-Based Anomaly Detection Method for Two-Stage Binary and Multi-Class Classification of Attacks in Intrusion …

H Kamal, M Mashaly - Algorithms, 2025‏ - mdpi.com
As security threats become more complex, the need for effective intrusion detection systems
(IDSs) has grown. Traditional machine learning methods are limited by the need for …

Securing Networks: A Deep Learning Approach with Explainable AI (XAI) and Federated Learning for Intrusion Detection

K Fatema, M Anannya, SK Dey, C Su… - … Conference on Data …, 2024‏ - Springer
In the constantly evolving field of cybersecurity, safeguarding sensitive data from hazardous
incidents is critical. Traditional intrusion detection systems (IDS) frequently rely on …

Öznitelik seçme yöntemlerinin makine öğrenmesi tabanlı saldırı tespit sistemi performansına etkileri

S Emanet, GK Baydoğmuş, Ö Demir - Dicle Üniversitesi Mühendislik …, 2021‏ - dergipark.org.tr
Artan İnternet tabanlı teknolojilerin kullanımı insanlara ve kurumlara önemli avantajlar
sağlamanın yanı sıra bir takım dezavantajları da beraberinde getirmiştir. Bunlardan en …

A Novel Two-Stage Classification Architecture Integrating Machine Learning and Artificial Immune System for Intrusion Detection on Balanced Dataset

K Fatema, SK Dey, R Bari, R Mazumder - International Conference on …, 2024‏ - Springer
Effective intrusion detection in cybersecurity is crucial, and previous studies have
investigated many approaches, such as Machine Learning (ML), Deep Learning (DL), and …

Machine Learning based Network Intrusion Detection with Hybrid Frequent Item Set Mining

M Firat, MG Bakal, A Akbaş - Politeknik Dergisi, 2024‏ - dergipark.org.tr
Bilgisayar ağlarının her geçen gün gelişmesi ve genişlemesi ve geliştirilen yazılımların
çeşitliliği ile muhtemel saldırıların neden olabileceği zararlar tahminlerin ötesinde …