A review on deep learning in medical image reconstruction

HM Zhang, B Dong - Journal of the Operations Research Society of China, 2020 - Springer
Medical imaging is crucial in modern clinics to provide guidance to the diagnosis and
treatment of diseases. Medical image reconstruction is one of the most fundamental and …

Deep learning methods for solving linear inverse problems: Research directions and paradigms

Y Bai, W Chen, J Chen, W Guo - Signal Processing, 2020 - Elsevier
The linear inverse problem is fundamental to the development of various scientific areas.
Innumerable attempts have been carried out to solve different variants of the linear inverse …

Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing

V Monga, Y Li, YC Eldar - IEEE Signal Processing Magazine, 2021 - ieeexplore.ieee.org
Deep neural networks provide unprecedented performance gains in many real-world
problems in signal and image processing. Despite these gains, the future development and …

Learning to optimize: A primer and a benchmark

T Chen, X Chen, W Chen, H Heaton, J Liu… - Journal of Machine …, 2022 - jmlr.org
Learning to optimize (L2O) is an emerging approach that leverages machine learning to
develop optimization methods, aiming at reducing the laborious iterations of hand …

Overview of deep learning-based CSI feedback in massive MIMO systems

J Guo, CK Wen, S **, GY Li - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Many performance gains achieved by massive multiple-input and multiple-output depend on
the accuracy of the downlink channel state information (CSI) at the transmitter (base station) …

FISTA-Net: Learning a fast iterative shrinkage thresholding network for inverse problems in imaging

J **ang, Y Dong, Y Yang - IEEE Transactions on Medical …, 2021 - ieeexplore.ieee.org
Inverse problems are essential to imaging applications. In this letter, we propose a model-
based deep learning network, named FISTA-Net, by combining the merits of interpretability …

The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale's 18th problem

MJ Colbrook, V Antun… - Proceedings of the …, 2022 - National Acad Sciences
Deep learning (DL) has had unprecedented success and is now entering scientific
computing with full force. However, current DL methods typically suffer from instability, even …

Plug-and-play methods provably converge with properly trained denoisers

E Ryu, J Liu, S Wang, X Chen… - … on Machine Learning, 2019 - proceedings.mlr.press
Abstract Plug-and-play (PnP) is a non-convex framework that integrates modern denoising
priors, such as BM3D or deep learning-based denoisers, into ADMM or other proximal …

Signal processing for implicit neural representations

D Xu, P Wang, Y Jiang, Z Fan… - Advances in Neural …, 2022 - proceedings.neurips.cc
Abstract Implicit Neural Representations (INRs) encoding continuous multi-media data via
multi-layer perceptrons has shown undebatable promise in various computer vision tasks …

Equivariant hypergraph diffusion neural operators

P Wang, S Yang, Y Liu, Z Wang, P Li - arxiv preprint arxiv:2207.06680, 2022 - arxiv.org
Hypergraph neural networks (HNNs) using neural networks to encode hypergraphs provide
a promising way to model higher-order relations in data and further solve relevant prediction …