Deep learning for monocular depth estimation: A review

Y Ming, X Meng, C Fan, H Yu - Neurocomputing, 2021 - Elsevier
Depth estimation is a classic task in computer vision, which is of great significance for many
applications such as augmented reality, target tracking and autonomous driving. Traditional …

Monocular depth estimation based on deep learning: An overview

C Zhao, Q Sun, C Zhang, Y Tang, F Qian - Science China Technological …, 2020 - Springer
Depth information is important for autonomous systems to perceive environments and
estimate their own state. Traditional depth estimation methods, like structure from motion …

Calibrated RGB-D salient object detection

W Ji, J Li, S Yu, M Zhang, Y Piao… - Proceedings of the …, 2021 - openaccess.thecvf.com
Complex backgrounds and similar appearances between objects and their surroundings are
generally recognized as challenging scenarios in Salient Object Detection (SOD). This …

Towards zero-shot scale-aware monocular depth estimation

V Guizilini, I Vasiljevic, D Chen… - Proceedings of the …, 2023 - openaccess.thecvf.com
Monocular depth estimation is scale-ambiguous, and thus requires scale supervision to
produce metric predictions. Even so, the resulting models will be geometry-specific, with …

Self-supervised monocular depth estimation: Solving the dynamic object problem by semantic guidance

M Klingner, JA Termöhlen, J Mikolajczyk… - Computer Vision–ECCV …, 2020 - Springer
Self-supervised monocular depth estimation presents a powerful method to obtain 3D scene
information from single camera images, which is trainable on arbitrary image sequences …

Monocular depth estimation using deep learning: A review

A Masoumian, HA Rashwan, J Cristiano, MS Asif… - Sensors, 2022 - mdpi.com
In current decades, significant advancements in robotics engineering and autonomous
vehicles have improved the requirement for precise depth measurements. Depth estimation …

A survey on deep learning techniques for stereo-based depth estimation

H Laga, LV Jospin, F Boussaid… - IEEE transactions on …, 2020 - ieeexplore.ieee.org
Estimating depth from RGB images is a long-standing ill-posed problem, which has been
explored for decades by the computer vision, graphics, and machine learning communities …

Cross-domain object detection through coarse-to-fine feature adaptation

Y Zheng, D Huang, S Liu… - Proceedings of the IEEE …, 2020 - openaccess.thecvf.com
Recent years have witnessed great progress in deep learning based object detection.
However, due to the domain shift problem, applying off-the-shelf detectors to an unseen …

Multi-frame self-supervised depth with transformers

V Guizilini, R Ambruș, D Chen… - Proceedings of the …, 2022 - openaccess.thecvf.com
Multi-frame depth estimation improves over single-frame approaches by also leveraging
geometric relationships between images via feature matching, in addition to learning …

Adaptive context-aware multi-modal network for depth completion

S Zhao, M Gong, H Fu, D Tao - IEEE Transactions on Image …, 2021 - ieeexplore.ieee.org
Depth completion aims to recover a dense depth map from the sparse depth data and the
corresponding single RGB image. The observed pixels provide the significant guidance for …