SEGRESS: Software engineering guidelines for reporting secondary studies

B Kitchenham, L Madeyski… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Context: Several tertiary studies have criticized the reporting of software engineering
secondary studies. Objective: Our objective is to identify guidelines for reporting software …

[PDF][PDF] A systematic literature review of software defect prediction

RS Wahono - Journal of software engineering, 2015 - romisatriawahono.net
Recent studies of software defect prediction typically produce datasets, methods and
frameworks which allow software engineers to focus on development activities in terms of …

[HTML][HTML] On the use of deep learning in software defect prediction

G Giray, KE Bennin, Ö Köksal, Ö Babur… - Journal of Systems and …, 2023 - Elsevier
Context: Automated software defect prediction (SDP) methods are increasingly applied,
often with the use of machine learning (ML) techniques. Yet, the existing ML-based …

Data quality for software vulnerability datasets

R Croft, MA Babar, MM Kholoosi - 2023 IEEE/ACM 45th …, 2023 - ieeexplore.ieee.org
The use of learning-based techniques to achieve automated software vulnerability detection
has been of longstanding interest within the software security domain. These data-driven …

A survey on FinTech

K Gai, M Qiu, X Sun - Journal of Network and Computer Applications, 2018 - Elsevier
As a new term in the financial industry, FinTech has become a popular term that describes
novel technologies adopted by the financial service institutions. This term covers a large …

Data quality matters: A case study on data label correctness for security bug report prediction

X Wu, W Zheng, X **a, D Lo - IEEE Transactions on Software …, 2021 - ieeexplore.ieee.org
In the research of mining software repositories, we need to label a large amount of data to
construct a predictive model. The correctness of the labels will affect the performance of a …

An empirical comparison of model validation techniques for defect prediction models

C Tantithamthavorn, S McIntosh… - IEEE Transactions …, 2016 - ieeexplore.ieee.org
Defect prediction models help software quality assurance teams to allocate their limited
resources to the most defect-prone modules. Model validation techniques, such as-fold …

The impact of class rebalancing techniques on the performance and interpretation of defect prediction models

C Tantithamthavorn, AE Hassan… - IEEE Transactions on …, 2018 - ieeexplore.ieee.org
Defect models that are trained on class imbalanced datasets (ie, the proportion of defective
and clean modules is not equally represented) are highly susceptible to produce inaccurate …

The impact of automated parameter optimization on defect prediction models

C Tantithamthavorn, S McIntosh… - IEEE Transactions …, 2018 - ieeexplore.ieee.org
Defect prediction models-classifiers that identify defect-prone software modules-have
configurable parameters that control their characteristics (eg, the number of trees in a …

Heterogeneous defect prediction

J Nam, S Kim - Proceedings of the 2015 10th joint meeting on …, 2015 - dl.acm.org
Software defect prediction is one of the most active research areas in software engineering.
We can build a prediction model with defect data collected from a software project and …