The multi-modal fusion in visual question answering: a review of attention mechanisms

S Lu, M Liu, L Yin, Z Yin, X Liu, W Zheng - PeerJ Computer Science, 2023 - peerj.com
Abstract Visual Question Answering (VQA) is a significant cross-disciplinary issue in the
fields of computer vision and natural language processing that requires a computer to output …

A complete survey on generative ai (aigc): Is chatgpt from gpt-4 to gpt-5 all you need?

C Zhang, C Zhang, S Zheng, Y Qiao, C Li… - arxiv preprint arxiv …, 2023 - arxiv.org
As ChatGPT goes viral, generative AI (AIGC, aka AI-generated content) has made headlines
everywhere because of its ability to analyze and create text, images, and beyond. With such …

Grounding dino: Marrying dino with grounded pre-training for open-set object detection

S Liu, Z Zeng, T Ren, F Li, H Zhang, J Yang… - … on Computer Vision, 2024 - Springer
In this paper, we develop an open-set object detector, called Grounding DINO, by marrying
Transformer-based detector DINO with grounded pre-training, which can detect arbitrary …

Image as a foreign language: Beit pretraining for vision and vision-language tasks

W Wang, H Bao, L Dong, J Bjorck… - Proceedings of the …, 2023 - openaccess.thecvf.com
A big convergence of language, vision, and multimodal pretraining is emerging. In this work,
we introduce a general-purpose multimodal foundation model BEiT-3, which achieves …

Visionllm: Large language model is also an open-ended decoder for vision-centric tasks

W Wang, Z Chen, X Chen, J Wu… - Advances in …, 2024 - proceedings.neurips.cc
Large language models (LLMs) have notably accelerated progress towards artificial general
intelligence (AGI), with their impressive zero-shot capacity for user-tailored tasks, endowing …

Llama-adapter: Efficient fine-tuning of language models with zero-init attention

R Zhang, J Han, C Liu, P Gao, A Zhou, X Hu… - arxiv preprint arxiv …, 2023 - arxiv.org
We present LLaMA-Adapter, a lightweight adaption method to efficiently fine-tune LLaMA
into an instruction-following model. Using 52K self-instruct demonstrations, LLaMA-Adapter …

Chameleon: Plug-and-play compositional reasoning with large language models

P Lu, B Peng, H Cheng, M Galley… - Advances in …, 2024 - proceedings.neurips.cc
Large language models (LLMs) have achieved remarkable progress in solving various
natural language processing tasks due to emergent reasoning abilities. However, LLMs …

A survey on multimodal large language models

S Yin, C Fu, S Zhao, K Li, X Sun, T Xu… - arxiv preprint arxiv …, 2023 - arxiv.org
Multimodal Large Language Model (MLLM) recently has been a new rising research
hotspot, which uses powerful Large Language Models (LLMs) as a brain to perform …

Llama-adapter v2: Parameter-efficient visual instruction model

P Gao, J Han, R Zhang, Z Lin, S Geng, A Zhou… - arxiv preprint arxiv …, 2023 - arxiv.org
How to efficiently transform large language models (LLMs) into instruction followers is
recently a popular research direction, while training LLM for multi-modal reasoning remains …

[PDF][PDF] The dawn of lmms: Preliminary explorations with gpt-4v (ision)

Z Yang, L Li, K Lin, J Wang, CC Lin… - arxiv preprint arxiv …, 2023 - stableaiprompts.com
Large multimodal models (LMMs) extend large language models (LLMs) with multi-sensory
skills, such as visual understanding, to achieve stronger generic intelligence. In this paper …