A review on machine learning, artificial intelligence, and smart technology in water treatment and monitoring

M Lowe, R Qin, X Mao - Water, 2022 - mdpi.com
Artificial-intelligence methods and machine-learning models have demonstrated their ability
to optimize, model, and automate critical water-and wastewater-treatment applications …

A review of formal methods applied to machine learning

C Urban, A Miné - arxiv preprint arxiv:2104.02466, 2021 - arxiv.org
We review state-of-the-art formal methods applied to the emerging field of the verification of
machine learning systems. Formal methods can provide rigorous correctness guarantees on …

Are formal methods applicable to machine learning and artificial intelligence?

M Krichen, A Mihoub, MY Alzahrani… - … Conference of Smart …, 2022 - ieeexplore.ieee.org
Formal approaches can provide strict correctness guarantees for the development of both
hardware and software systems. In this work, we examine state-of-the-art formal methods for …

NNV 2.0: the neural network verification tool

DM Lopez, SW Choi, HD Tran, TT Johnson - International Conference on …, 2023 - Springer
This manuscript presents the updated version of the Neural Network Verification (NNV) tool.
NNV is a formal verification software tool for deep learning models and cyber-physical …

[PDF][PDF] Towards scalable verification of deep reinforcement learning

G Amir, M Schapira, G Katz - 2021 formal methods in computer …, 2021 - library.oapen.org
Deep neural networks (DNNs) have gained significant popularity in recent years, becoming
the state of the art in a variety of domains. In particular, deep reinforcement learning (DRL) …

Verifying learning-based robotic navigation systems

G Amir, D Corsi, R Yerushalmi, L Marzari… - … Conference on Tools …, 2023 - Springer
Deep reinforcement learning (DRL) has become a dominant deep-learning paradigm for
tasks where complex policies are learned within reactive systems. Unfortunately, these …

An abstraction-refinement approach to verifying convolutional neural networks

M Ostrovsky, C Barrett, G Katz - International Symposium on Automated …, 2022 - Springer
Convolutional neural networks (CNNs) have achieved immense popularity in areas like
computer vision, image processing, speech proccessing, and many others. Unfortunately …

Verifying generalization in deep learning

G Amir, O Maayan, T Zelazny, G Katz… - … Conference on Computer …, 2023 - Springer
Deep neural networks (DNNs) are the workhorses of deep learning, which constitutes the
state of the art in numerous application domains. However, DNN-based decision rules are …

Verifying recurrent neural networks using invariant inference

Y Jacoby, C Barrett, G Katz - … Technology for Verification and Analysis: 18th …, 2020 - Springer
Deep neural networks are revolutionizing the way complex systems are developed.
However, these automatically-generated networks are opaque to humans, making it difficult …

[PDF][PDF] Formally explaining neural networks within reactive systems

S Bassan, G Amir, D Corsi, I Refaeli… - 2023 Formal Methods in …, 2023 - library.oapen.org
Deep neural networks (DNNs) are increasingly being used as controllers in reactive
systems. However, DNNs are highly opaque, which renders it difficult to explain and justify …