Scientific discovery in the age of artificial intelligence

H Wang, T Fu, Y Du, W Gao, K Huang, Z Liu… - Nature, 2023 - nature.com
Artificial intelligence (AI) is being increasingly integrated into scientific discovery to augment
and accelerate research, hel** scientists to generate hypotheses, design experiments …

Neural operators for accelerating scientific simulations and design

K Azizzadenesheli, N Kovachki, Z Li… - Nature Reviews …, 2024 - nature.com
Scientific discovery and engineering design are currently limited by the time and cost of
physical experiments. Numerical simulations are an alternative approach but are usually …

Fourier neural operator with learned deformations for pdes on general geometries

Z Li, DZ Huang, B Liu, A Anandkumar - Journal of Machine Learning …, 2023 - jmlr.org
Deep learning surrogate models have shown promise in solving partial differential
equations (PDEs). Among them, the Fourier neural operator (FNO) achieves good accuracy …

Neural operator: Learning maps between function spaces with applications to pdes

N Kovachki, Z Li, B Liu, K Azizzadenesheli… - Journal of Machine …, 2023 - jmlr.org
The classical development of neural networks has primarily focused on learning map**s
between finite dimensional Euclidean spaces or finite sets. We propose a generalization of …

Respecting causality is all you need for training physics-informed neural networks

S Wang, S Sankaran, P Perdikaris - arxiv preprint arxiv:2203.07404, 2022 - arxiv.org
While the popularity of physics-informed neural networks (PINNs) is steadily rising, to this
date PINNs have not been successful in simulating dynamical systems whose solution …

Geometry-informed neural operator for large-scale 3d pdes

Z Li, N Kovachki, C Choy, B Li… - Advances in …, 2024 - proceedings.neurips.cc
We propose the geometry-informed neural operator (GINO), a highly efficient approach to
learning the solution operator of large-scale partial differential equations with varying …

Weak baselines and reporting biases lead to overoptimism in machine learning for fluid-related partial differential equations

N McGreivy, A Hakim - Nature Machine Intelligence, 2024 - nature.com
One of the most promising applications of machine learning in computational physics is to
accelerate the solution of partial differential equations (PDEs). The key objective of machine …

Physics-informed deep neural operator networks

S Goswami, A Bora, Y Yu, GE Karniadakis - Machine Learning in …, 2023 - Springer
Standard neural networks can approximate general nonlinear operators, represented either
explicitly by a combination of mathematical operators, eg in an advection–diffusion reaction …

Kan: Kolmogorov-arnold networks

Z Liu, Y Wang, S Vaidya, F Ruehle, J Halverson… - arxiv preprint arxiv …, 2024 - arxiv.org
Inspired by the Kolmogorov-Arnold representation theorem, we propose Kolmogorov-Arnold
Networks (KANs) as promising alternatives to Multi-Layer Perceptrons (MLPs). While MLPs …

[HTML][HTML] Tackling the curse of dimensionality with physics-informed neural networks

Z Hu, K Shukla, GE Karniadakis, K Kawaguchi - Neural Networks, 2024 - Elsevier
The curse-of-dimensionality taxes computational resources heavily with exponentially
increasing computational cost as the dimension increases. This poses great challenges in …