Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Long sequence time-series forecasting with deep learning: A survey
The development of deep learning technology has brought great improvements to the field
of time series forecasting. Short sequence time-series forecasting no longer satisfies the …
of time series forecasting. Short sequence time-series forecasting no longer satisfies the …
Self-supervised learning for time series analysis: Taxonomy, progress, and prospects
Self-supervised learning (SSL) has recently achieved impressive performance on various
time series tasks. The most prominent advantage of SSL is that it reduces the dependence …
time series tasks. The most prominent advantage of SSL is that it reduces the dependence …
One fits all: Power general time series analysis by pretrained lm
Although we have witnessed great success of pre-trained models in natural language
processing (NLP) and computer vision (CV), limited progress has been made for general …
processing (NLP) and computer vision (CV), limited progress has been made for general …
[PDF][PDF] Timesnet: Temporal 2d-variation modeling for general time series analysis
Time series analysis is of immense importance in extensive applications, such as weather
forecasting, anomaly detection, and action recognition. This paper focuses on temporal …
forecasting, anomaly detection, and action recognition. This paper focuses on temporal …
Are transformers effective for time series forecasting?
Recently, there has been a surge of Transformer-based solutions for the long-term time
series forecasting (LTSF) task. Despite the growing performance over the past few years, we …
series forecasting (LTSF) task. Despite the growing performance over the past few years, we …
Recipe for a general, powerful, scalable graph transformer
We propose a recipe on how to build a general, powerful, scalable (GPS) graph Transformer
with linear complexity and state-of-the-art results on a diverse set of benchmarks. Graph …
with linear complexity and state-of-the-art results on a diverse set of benchmarks. Graph …
Crossformer: Transformer utilizing cross-dimension dependency for multivariate time series forecasting
Recently many deep models have been proposed for multivariate time series (MTS)
forecasting. In particular, Transformer-based models have shown great potential because …
forecasting. In particular, Transformer-based models have shown great potential because …
Non-stationary transformers: Exploring the stationarity in time series forecasting
Transformers have shown great power in time series forecasting due to their global-range
modeling ability. However, their performance can degenerate terribly on non-stationary real …
modeling ability. However, their performance can degenerate terribly on non-stationary real …
Transformers in time series: A survey
Transformers have achieved superior performances in many tasks in natural language
processing and computer vision, which also triggered great interest in the time series …
processing and computer vision, which also triggered great interest in the time series …
Lag-llama: Towards foundation models for time series forecasting
Aiming to build foundation models for time-series forecasting and study their scaling
behavior, we present here our work-in-progress on Lag-Llama, a general-purpose …
behavior, we present here our work-in-progress on Lag-Llama, a general-purpose …