Machine learning in drug discovery: a review

S Dara, S Dhamercherla, SS Jadav, CHM Babu… - Artificial intelligence …, 2022 - Springer
This review provides the feasible literature on drug discovery through ML tools and
techniques that are enforced in every phase of drug development to accelerate the research …

Deep learning in histopathology: the path to the clinic

J Van der Laak, G Litjens, F Ciompi - Nature medicine, 2021 - nature.com
Abstract Machine learning techniques have great potential to improve medical diagnostics,
offering ways to improve accuracy, reproducibility and speed, and to ease workloads for …

A multimodal generative AI copilot for human pathology

MY Lu, B Chen, DFK Williamson, RJ Chen, M Zhao… - Nature, 2024 - nature.com
Computational pathology, has witnessed considerable progress in the development of both
task-specific predictive models and task-agnostic self-supervised vision encoders …

Scaling vision transformers to gigapixel images via hierarchical self-supervised learning

RJ Chen, C Chen, Y Li, TY Chen… - Proceedings of the …, 2022 - openaccess.thecvf.com
Abstract Vision Transformers (ViTs) and their multi-scale and hierarchical variations have
been successful at capturing image representations but their use has been generally …

[HTML][HTML] Digital pathology and artificial intelligence in translational medicine and clinical practice

V Baxi, R Edwards, M Montalto, S Saha - Modern Pathology, 2022 - Elsevier
Traditional pathology approaches have played an integral role in the delivery of diagnosis,
semi-quantitative or qualitative assessment of protein expression, and classification of …

Domain adaptation for medical image analysis: a survey

H Guan, M Liu - IEEE Transactions on Biomedical Engineering, 2021 - ieeexplore.ieee.org
Machine learning techniques used in computer-aided medical image analysis usually suffer
from the domain shift problem caused by different distributions between source/reference …

The biological meaning of radiomic features

MR Tomaszewski, RJ Gillies - Radiology, 2021 - pubs.rsna.org
Radiomic analysis offers a powerful tool for the extraction of clinically relevant information
from radiologic imaging. Radiomics can be used to predict patient outcome through …

When the Machine Meets the Expert: An Ethnography of Develo** AI for Hiring.

E Van den Broek, A Sergeeva, M Huysman - MIS quarterly, 2021 - search.ebscohost.com
The introduction of machine learning (ML) in organizations comes with the claim that
algorithms will produce insights superior to those of experts by discovering the" truth" from …

Data-efficient and weakly supervised computational pathology on whole-slide images

MY Lu, DFK Williamson, TY Chen, RJ Chen… - Nature biomedical …, 2021 - nature.com
Deep-learning methods for computational pathology require either manual annotation of
gigapixel whole-slide images (WSIs) or large datasets of WSIs with slide-level labels and …

Key challenges for delivering clinical impact with artificial intelligence

CJ Kelly, A Karthikesalingam, M Suleyman, G Corrado… - BMC medicine, 2019 - Springer
Background Artificial intelligence (AI) research in healthcare is accelerating rapidly, with
potential applications being demonstrated across various domains of medicine. However …