A survey on accuracy-oriented neural recommendation: From collaborative filtering to information-rich recommendation

L Wu, X He, X Wang, K Zhang… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Influenced by the great success of deep learning in computer vision and language
understanding, research in recommendation has shifted to inventing new recommender …

[HTML][HTML] Integrating machine learning with human knowledge

C Deng, X Ji, C Rainey, J Zhang, W Lu - Iscience, 2020 - cell.com
Machine learning has been heavily researched and widely used in many disciplines.
However, achieving high accuracy requires a large amount of data that is sometimes …

Self-supervised graph learning for recommendation

J Wu, X Wang, F Feng, X He, L Chen, J Lian… - Proceedings of the 44th …, 2021 - dl.acm.org
Representation learning on user-item graph for recommendation has evolved from using
single ID or interaction history to exploiting higher-order neighbors. This leads to the …

Neural graph collaborative filtering

X Wang, X He, M Wang, F Feng, TS Chua - Proceedings of the 42nd …, 2019 - dl.acm.org
Learning vector representations (aka. embeddings) of users and items lies at the core of
modern recommender systems. Ranging from early matrix factorization to recently emerged …

Kgat: Knowledge graph attention network for recommendation

X Wang, X He, Y Cao, M Liu, TS Chua - Proceedings of the 25th ACM …, 2019 - dl.acm.org
To provide more accurate, diverse, and explainable recommendation, it is compulsory to go
beyond modeling user-item interactions and take side information into account. Traditional …

Knowledge graph contrastive learning for recommendation

Y Yang, C Huang, L **a, C Li - … of the 45th international ACM SIGIR …, 2022 - dl.acm.org
Knowledge Graphs (KGs) have been utilized as useful side information to improve
recommendation quality. In those recommender systems, knowledge graph information …

Towards open-world recommendation with knowledge augmentation from large language models

Y **, W Liu, J Lin, X Cai, H Zhu, J Zhu, B Chen… - Proceedings of the 18th …, 2024 - dl.acm.org
Recommender system plays a vital role in various online services. However, its insulated
nature of training and deploying separately within a specific closed domain limits its access …

A survey on knowledge graph-based recommender systems

Q Guo, F Zhuang, C Qin, H Zhu, X **e… - … on Knowledge and …, 2020 - ieeexplore.ieee.org
To solve the information explosion problem and enhance user experience in various online
applications, recommender systems have been developed to model users' preferences …

Learning intents behind interactions with knowledge graph for recommendation

X Wang, T Huang, D Wang, Y Yuan, Z Liu… - Proceedings of the web …, 2021 - dl.acm.org
Knowledge graph (KG) plays an increasingly important role in recommender systems. A
recent technical trend is to develop end-to-end models founded on graph neural networks …

MMGCN: Multi-modal graph convolution network for personalized recommendation of micro-video

Y Wei, X Wang, L Nie, X He, R Hong… - Proceedings of the 27th …, 2019 - dl.acm.org
Personalized recommendation plays a central role in many online content sharing platforms.
To provide quality micro-video recommendation service, it is of crucial importance to …