Review the state-of-the-art technologies of semantic segmentation based on deep learning
The goal of semantic segmentation is to segment the input image according to semantic
information and predict the semantic category of each pixel from a given label set. With the …
information and predict the semantic category of each pixel from a given label set. With the …
Domain generalization: A survey
Generalization to out-of-distribution (OOD) data is a capability natural to humans yet
challenging for machines to reproduce. This is because most learning algorithms strongly …
challenging for machines to reproduce. This is because most learning algorithms strongly …
MIC: Masked image consistency for context-enhanced domain adaptation
In unsupervised domain adaptation (UDA), a model trained on source data (eg synthetic) is
adapted to target data (eg real-world) without access to target annotation. Most previous …
adapted to target data (eg real-world) without access to target annotation. Most previous …
Towards out-of-distribution generalization: A survey
Traditional machine learning paradigms are based on the assumption that both training and
test data follow the same statistical pattern, which is mathematically referred to as …
test data follow the same statistical pattern, which is mathematically referred to as …
Generalizing to unseen domains: A survey on domain generalization
Machine learning systems generally assume that the training and testing distributions are
the same. To this end, a key requirement is to develop models that can generalize to unseen …
the same. To this end, a key requirement is to develop models that can generalize to unseen …
Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation
Self-training is a competitive approach in domain adaptive segmentation, which trains the
network with the pseudo labels on the target domain. However inevitably, the pseudo labels …
network with the pseudo labels on the target domain. However inevitably, the pseudo labels …
Exact feature distribution matching for arbitrary style transfer and domain generalization
Arbitrary style transfer (AST) and domain generalization (DG) are important yet challenging
visual learning tasks, which can be cast as a feature distribution matching problem. With the …
visual learning tasks, which can be cast as a feature distribution matching problem. With the …
Feddg: Federated domain generalization on medical image segmentation via episodic learning in continuous frequency space
Federated learning allows distributed medical institutions to collaboratively learn a shared
prediction model with privacy protection. While at clinical deployment, the models trained in …
prediction model with privacy protection. While at clinical deployment, the models trained in …
Robustnet: Improving domain generalization in urban-scene segmentation via instance selective whitening
Enhancing the generalization capability of deep neural networks to unseen domains is
crucial for safety-critical applications in the real world such as autonomous driving. To …
crucial for safety-critical applications in the real world such as autonomous driving. To …
Self-supervised augmentation consistency for adapting semantic segmentation
We propose an approach to domain adaptation for semantic segmentation that is both
practical and highly accurate. In contrast to previous work, we abandon the use of …
practical and highly accurate. In contrast to previous work, we abandon the use of …