[HTML][HTML] A review of uncertainty quantification in deep learning: Techniques, applications and challenges

M Abdar, F Pourpanah, S Hussain, D Rezazadegan… - Information fusion, 2021 - Elsevier
Uncertainty quantification (UQ) methods play a pivotal role in reducing the impact of
uncertainties during both optimization and decision making processes. They have been …

Interpretable machine learning for discovery: Statistical challenges and opportunities

GI Allen, L Gan, L Zheng - Annual Review of Statistics and Its …, 2023 - annualreviews.org
New technologies have led to vast troves of large and complex data sets across many
scientific domains and industries. People routinely use machine learning techniques not …

Interpretable machine learning: Fundamental principles and 10 grand challenges

C Rudin, C Chen, Z Chen, H Huang… - Statistic …, 2022 - projecteuclid.org
Interpretability in machine learning (ML) is crucial for high stakes decisions and
troubleshooting. In this work, we provide fundamental principles for interpretable ML, and …

[HTML][HTML] Evaluating XAI: A comparison of rule-based and example-based explanations

J van der Waa, E Nieuwburg, A Cremers, M Neerincx - Artificial intelligence, 2021 - Elsevier
Abstract Current developments in Artificial Intelligence (AI) led to a resurgence of
Explainable AI (XAI). New methods are being researched to obtain information from AI …

Toward transparent ai: A survey on interpreting the inner structures of deep neural networks

T Räuker, A Ho, S Casper… - 2023 ieee conference …, 2023 - ieeexplore.ieee.org
The last decade of machine learning has seen drastic increases in scale and capabilities.
Deep neural networks (DNNs) are increasingly being deployed in the real world. However …

Explainable machine learning in deployment

U Bhatt, A **ang, S Sharma, A Weller, A Taly… - Proceedings of the …, 2020 - dl.acm.org
Explainable machine learning offers the potential to provide stakeholders with insights into
model behavior by using various methods such as feature importance scores, counterfactual …

On interpretability of artificial neural networks: A survey

FL Fan, J **ong, M Li, G Wang - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Deep learning as performed by artificial deep neural networks (DNNs) has achieved great
successes recently in many important areas that deal with text, images, videos, graphs, and …

Explainability fact sheets: a framework for systematic assessment of explainable approaches

K Sokol, P Flach - Proceedings of the 2020 conference on fairness …, 2020 - dl.acm.org
Explanations in Machine Learning come in many forms, but a consensus regarding their
desired properties is yet to emerge. In this paper we introduce a taxonomy and a set of …

Reliable post hoc explanations: Modeling uncertainty in explainability

D Slack, A Hilgard, S Singh… - Advances in neural …, 2021 - proceedings.neurips.cc
As black box explanations are increasingly being employed to establish model credibility in
high stakes settings, it is important to ensure that these explanations are accurate and …

The role of explainable AI in the context of the AI Act

C Panigutti, R Hamon, I Hupont… - Proceedings of the …, 2023 - dl.acm.org
The proposed EU regulation for Artificial Intelligence (AI), the AI Act, has sparked some
debate about the role of explainable AI (XAI) in high-risk AI systems. Some argue that black …