Fairness in machine learning: A survey
When Machine Learning technologies are used in contexts that affect citizens, companies as
well as researchers need to be confident that there will not be any unexpected social …
well as researchers need to be confident that there will not be any unexpected social …
Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges
Most machine learning algorithms are configured by a set of hyperparameters whose values
must be carefully chosen and which often considerably impact performance. To avoid a time …
must be carefully chosen and which often considerably impact performance. To avoid a time …
A survey on semi-supervised learning
Semi-supervised learning is the branch of machine learning concerned with using labelled
as well as unlabelled data to perform certain learning tasks. Conceptually situated between …
as well as unlabelled data to perform certain learning tasks. Conceptually situated between …
[BOOK][B] Neural networks and deep learning
CC Aggarwal - 2018 - Springer
“Any AI smart enough to pass a Turing test is smart enough to know to fail it.”–*** Ian
McDonald Neural networks were developed to simulate the human nervous system for …
McDonald Neural networks were developed to simulate the human nervous system for …
AutoML: A survey of the state-of-the-art
Deep learning (DL) techniques have obtained remarkable achievements on various tasks,
such as image recognition, object detection, and language modeling. However, building a …
such as image recognition, object detection, and language modeling. However, building a …
[BOOK][B] Automated machine learning: methods, systems, challenges
This open access book presents the first comprehensive overview of general methods in
Automated Machine Learning (AutoML), collects descriptions of existing systems based on …
Automated Machine Learning (AutoML), collects descriptions of existing systems based on …
[PDF][PDF] Hyperparameter optimization
Recent interest in complex and computationally expensive machine learning models with
many hyperparameters, such as automated machine learning (AutoML) frameworks and …
many hyperparameters, such as automated machine learning (AutoML) frameworks and …
Taking the human out of the loop: A review of Bayesian optimization
Big Data applications are typically associated with systems involving large numbers of
users, massive complex software systems, and large-scale heterogeneous computing and …
users, massive complex software systems, and large-scale heterogeneous computing and …
[PDF][PDF] H2o automl: Scalable automatic machine learning
E LeDell, S Poirier - Proceedings of the AutoML Workshop at ICML, 2020 - automl.org
H2O is an open source, distributed machine learning platform designed to scale to very
large datasets, with APIs in R, Python, Java and Scala. We present H2O AutoML, a highly …
large datasets, with APIs in R, Python, Java and Scala. We present H2O AutoML, a highly …
Hyperband: A novel bandit-based approach to hyperparameter optimization
Performance of machine learning algorithms depends critically on identifying a good set of
hyperparameters. While recent approaches use Bayesian optimization to adaptively select …
hyperparameters. While recent approaches use Bayesian optimization to adaptively select …