Security and privacy challenges of large language models: A survey

BC Das, MH Amini, Y Wu - ACM Computing Surveys, 2024 - dl.acm.org
Large language models (LLMs) have demonstrated extraordinary capabilities and
contributed to multiple fields, such as generating and summarizing text, language …

Dataset distillation: A comprehensive review

R Yu, S Liu, X Wang - IEEE Transactions on Pattern Analysis …, 2023 - ieeexplore.ieee.org
Recent success of deep learning is largely attributed to the sheer amount of data used for
training deep neural networks. Despite the unprecedented success, the massive data …

Poisoning web-scale training datasets is practical

N Carlini, M Jagielski… - … IEEE Symposium on …, 2024 - ieeexplore.ieee.org
Deep learning models are often trained on distributed, web-scale datasets crawled from the
internet. In this paper, we introduce two new dataset poisoning attacks that intentionally …

Anti-backdoor learning: Training clean models on poisoned data

Y Li, X Lyu, N Koren, L Lyu, B Li… - Advances in Neural …, 2021 - proceedings.neurips.cc
Backdoor attack has emerged as a major security threat to deep neural networks (DNNs).
While existing defense methods have demonstrated promising results on detecting or …

Adversarial neuron pruning purifies backdoored deep models

D Wu, Y Wang - Advances in Neural Information Processing …, 2021 - proceedings.neurips.cc
As deep neural networks (DNNs) are growing larger, their requirements for computational
resources become huge, which makes outsourcing training more popular. Training in a third …

Invisible backdoor attack with sample-specific triggers

Y Li, Y Li, B Wu, L Li, R He… - Proceedings of the IEEE …, 2021 - openaccess.thecvf.com
Recently, backdoor attacks pose a new security threat to the training process of deep neural
networks (DNNs). Attackers intend to inject hidden backdoors into DNNs, such that the …

Lira: Learnable, imperceptible and robust backdoor attacks

K Doan, Y Lao, W Zhao, P Li - Proceedings of the IEEE/CVF …, 2021 - openaccess.thecvf.com
Recently, machine learning models have demonstrated to be vulnerable to backdoor
attacks, primarily due to the lack of transparency in black-box models such as deep neural …

Backdoor learning: A survey

Y Li, Y Jiang, Z Li, ST **-based backdoor attack
A Nguyen, A Tran - arxiv preprint arxiv:2102.10369, 2021 - arxiv.org
With the thriving of deep learning and the widespread practice of using pre-trained networks,
backdoor attacks have become an increasing security threat drawing many research …

Reflection backdoor: A natural backdoor attack on deep neural networks

Y Liu, X Ma, J Bailey, F Lu - Computer Vision–ECCV 2020: 16th European …, 2020 - Springer
Recent studies have shown that DNNs can be compromised by backdoor attacks crafted at
training time. A backdoor attack installs a backdoor into the victim model by injecting a …