A survey on graph kernels

NM Kriege, FD Johansson, C Morris - Applied Network Science, 2020 - Springer
Graph kernels have become an established and widely-used technique for solving
classification tasks on graphs. This survey gives a comprehensive overview of techniques …

Random walk graph neural networks

G Nikolentzos, M Vazirgiannis - Advances in Neural …, 2020 - proceedings.neurips.cc
In recent years, graph neural networks (GNNs) have become the de facto tool for performing
machine learning tasks on graphs. Most GNNs belong to the family of message passing …

Matching node embeddings for graph similarity

G Nikolentzos, P Meladianos… - Proceedings of the AAAI …, 2017 - ojs.aaai.org
Graph kernels have emerged as a powerful tool for graph comparison. Most existing graph
kernels focus on local properties of graphs and ignore global structure. In this paper, we …

Graph kernels: A survey

G Nikolentzos, G Siglidis, M Vazirgiannis - Journal of Artificial Intelligence …, 2021 - jair.org
Graph kernels have attracted a lot of attention during the last decade, and have evolved into
a rapidly develo** branch of learning on structured data. During the past 20 years, the …

Haqjsk: Hierarchical-aligned quantum jensen-shannon kernels for graph classification

L Bai, L Cui, Y Wang, M Li, J Li… - … on Knowledge and …, 2024 - ieeexplore.ieee.org
In this work, we propose two novel quantum walk kernels, namely the Hierarchical Aligned
Quantum Jensen-Shannon Kernels (HAQJSK), between un-attributed graph structures …

A large-scale database for graph representation learning

S Freitas, Y Dong, J Neil, DH Chau - arxiv preprint arxiv:2011.07682, 2020 - arxiv.org
With the rapid emergence of graph representation learning, the construction of new large-
scale datasets is necessary to distinguish model capabilities and accurately assess the …

Glocalized weisfeiler-lehman graph kernels: Global-local feature maps of graphs

C Morris, K Kersting, P Mutzel - 2017 IEEE International …, 2017 - ieeexplore.ieee.org
Most state-of-the-art graph kernels only take local graph properties into account, ie, the
kernel is computed with regard to properties of the neighborhood of vertices or other small …

Sub-network kernels for measuring similarity of brain connectivity networks in disease diagnosis

B Jie, M Liu, D Zhang, D Shen - IEEE Transactions on Image …, 2018 - ieeexplore.ieee.org
As a simple representation of interactions among distributed brain regions, brain networks
have been widely applied to automated diagnosis of brain diseases, such as Alzheimer's …

[PDF][PDF] A Degeneracy Framework for Graph Similarity.

G Nikolentzos, P Meladianos, S Limnios… - IJCAI, 2018 - ijcai.org
The problem of accurately measuring the similarity between graphs is at the core of many
applications in a variety of disciplines. Most existing methods for graph similarity focus either …

Lovász principle for unsupervised graph representation learning

Z Sun, C Ding, J Fan - Advances in Neural Information …, 2023 - proceedings.neurips.cc
This paper focuses on graph-level representation learning that aims to represent graphs as
vectors that can be directly utilized in downstream tasks such as graph classification. We …