A comprehensive survey and analysis of generative models in machine learning
Generative models have been in existence for many decades. In the field of machine
learning, we come across many scenarios when directly learning a target is intractable …
learning, we come across many scenarios when directly learning a target is intractable …
Speech recognition using deep neural networks: A systematic review
Over the past decades, a tremendous amount of research has been done on the use of
machine learning for speech processing applications, especially speech recognition …
machine learning for speech processing applications, especially speech recognition …
Graph neural networks: foundation, frontiers and applications
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …
recent years. Graph neural networks, also known as deep learning on graphs, graph …
Ast: Audio spectrogram transformer
In the past decade, convolutional neural networks (CNNs) have been widely adopted as the
main building block for end-to-end audio classification models, which aim to learn a direct …
main building block for end-to-end audio classification models, which aim to learn a direct …
Deep learning for audio signal processing
Given the recent surge in developments of deep learning, this paper provides a review of the
state-of-the-art deep learning techniques for audio signal processing. Speech, music, and …
state-of-the-art deep learning techniques for audio signal processing. Speech, music, and …
Deep learning for human affect recognition: Insights and new developments
Automatic human affect recognition is a key step towards more natural human-computer
interaction. Recent trends include recognition in the wild using a fusion of audiovisual and …
interaction. Recent trends include recognition in the wild using a fusion of audiovisual and …
A survey of deep neural network architectures and their applications
Since the proposal of a fast learning algorithm for deep belief networks in 2006, the deep
learning techniques have drawn ever-increasing research interests because of their …
learning techniques have drawn ever-increasing research interests because of their …
Unsupervised speech representation learning using wavenet autoencoders
We consider the task of unsupervised extraction of meaningful latent representations of
speech by applying autoencoding neural networks to speech waveforms. The goal is to …
speech by applying autoencoding neural networks to speech waveforms. The goal is to …
[LIBRO][B] Deep learning
I Goodfellow - 2016 - books.google.com
An introduction to a broad range of topics in deep learning, covering mathematical and
conceptual background, deep learning techniques used in industry, and research …
conceptual background, deep learning techniques used in industry, and research …
Low-dose CT via convolutional neural network
H Chen, Y Zhang, W Zhang, P Liao, K Li… - Biomedical optics …, 2017 - opg.optica.org
In order to reduce the potential radiation risk, low-dose CT has attracted an increasing
attention. However, simply lowering the radiation dose will significantly degrade the image …
attention. However, simply lowering the radiation dose will significantly degrade the image …