Deep-learning-based approaches for semantic segmentation of natural scene images: A review

B Emek Soylu, MS Guzel, GE Bostanci, F Ekinci… - Electronics, 2023 - mdpi.com
The task of semantic segmentation holds a fundamental position in the field of computer
vision. Assigning a semantic label to each pixel in an image is a challenging task. In recent …

A survey on label-efficient deep image segmentation: Bridging the gap between weak supervision and dense prediction

W Shen, Z Peng, X Wang, H Wang… - IEEE transactions on …, 2023 - ieeexplore.ieee.org
The rapid development of deep learning has made a great progress in image segmentation,
one of the fundamental tasks of computer vision. However, the current segmentation …

Symphonize 3d semantic scene completion with contextual instance queries

H Jiang, T Cheng, N Gao, H Zhang… - Proceedings of the …, 2024 - openaccess.thecvf.com
Abstract 3D Semantic Scene Completion (SSC) has emerged as a nascent and pivotal
undertaking in autonomous driving aiming to predict the voxel occupancy within volumetric …

Clip is also an efficient segmenter: A text-driven approach for weakly supervised semantic segmentation

Y Lin, M Chen, W Wang, B Wu, K Li… - Proceedings of the …, 2023 - openaccess.thecvf.com
Weakly supervised semantic segmentation (WSSS) with image-level labels is a challenging
task. Mainstream approaches follow a multi-stage framework and suffer from high training …

Multi-class token transformer for weakly supervised semantic segmentation

L Xu, W Ouyang, M Bennamoun… - Proceedings of the …, 2022 - openaccess.thecvf.com
This paper proposes a new transformer-based framework to learn class-specific object
localization maps as pseudo labels for weakly supervised semantic segmentation (WSSS) …

Layercam: Exploring hierarchical class activation maps for localization

PT Jiang, CB Zhang, Q Hou… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
The class activation maps are generated from the final convolutional layer of CNN. They can
highlight discriminative object regions for the class of interest. These discovered object …

Regional semantic contrast and aggregation for weakly supervised semantic segmentation

T Zhou, M Zhang, F Zhao, J Li - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Learning semantic segmentation from weakly-labeled (eg, image tags only) data is
challenging since it is hard to infer dense object regions from sparse semantic tags. Despite …

Self-supervised image-specific prototype exploration for weakly supervised semantic segmentation

Q Chen, L Yang, JH Lai, X **e - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Abstract Weakly Supervised Semantic Segmentation (WSSS) based on image-level labels
has attracted much attention due to low annotation costs. Existing methods often rely on …

L2g: A simple local-to-global knowledge transfer framework for weakly supervised semantic segmentation

PT Jiang, Y Yang, Q Hou, Y Wei - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Mining precise class-aware attention maps, aka, class activation maps, is essential for
weakly supervised semantic segmentation. In this paper, we present L2G, a simple online …

Partmix: Regularization strategy to learn part discovery for visible-infrared person re-identification

M Kim, S Kim, J Park, S Park… - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
Modern data augmentation using a mixture-based technique can regularize the models from
overfitting to the training data in various computer vision applications, but a proper data …