A comprehensive survey of continual learning: theory, method and application

L Wang, X Zhang, H Su, J Zhu - IEEE Transactions on Pattern …, 2024 - ieeexplore.ieee.org
To cope with real-world dynamics, an intelligent system needs to incrementally acquire,
update, accumulate, and exploit knowledge throughout its lifetime. This ability, known as …

A comprehensive survey of forgetting in deep learning beyond continual learning

Z Wang, E Yang, L Shen… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Forgetting refers to the loss or deterioration of previously acquired knowledge. While
existing surveys on forgetting have primarily focused on continual learning, forgetting is a …

Revisiting class-incremental learning with pre-trained models: Generalizability and adaptivity are all you need

DW Zhou, ZW Cai, HJ Ye, DC Zhan, Z Liu - arxiv preprint arxiv …, 2023 - arxiv.org
Class-incremental learning (CIL) aims to adapt to emerging new classes without forgetting
old ones. Traditional CIL models are trained from scratch to continually acquire knowledge …

Class-incremental learning: A survey

DW Zhou, QW Wang, ZH Qi, HJ Ye… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Deep models, eg, CNNs and Vision Transformers, have achieved impressive achievements
in many vision tasks in the closed world. However, novel classes emerge from time to time in …

Prototype augmentation and self-supervision for incremental learning

F Zhu, XY Zhang, C Wang, F Yin… - Proceedings of the …, 2021 - openaccess.thecvf.com
Despite the impressive performance in many individual tasks, deep neural networks suffer
from catastrophic forgetting when learning new tasks incrementally. Recently, various …

Class-incremental learning: survey and performance evaluation on image classification

M Masana, X Liu, B Twardowski… - … on Pattern Analysis …, 2022 - ieeexplore.ieee.org
For future learning systems, incremental learning is desirable because it allows for: efficient
resource usage by eliminating the need to retrain from scratch at the arrival of new data; …

Class-incremental learning via dual augmentation

F Zhu, Z Cheng, XY Zhang… - Advances in Neural …, 2021 - proceedings.neurips.cc
Deep learning systems typically suffer from catastrophic forgetting of past knowledge when
acquiring new skills continually. In this paper, we emphasize two dilemmas, representation …

Representation compensation networks for continual semantic segmentation

CB Zhang, JW **ao, X Liu, YC Chen… - Proceedings of the …, 2022 - openaccess.thecvf.com
In this work, we study the continual semantic segmentation problem, where the deep neural
networks are required to incorporate new classes continually without catastrophic forgetting …

Pcr: Proxy-based contrastive replay for online class-incremental continual learning

H Lin, B Zhang, S Feng, X Li… - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
Online class-incremental continual learning is a specific task of continual learning. It aims to
continuously learn new classes from data stream and the samples of data stream are seen …

Few-shot class-incremental learning by sampling multi-phase tasks

DW Zhou, HJ Ye, L Ma, D **e, S Pu… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
New classes arise frequently in our ever-changing world, eg, emerging topics in social
media and new types of products in e-commerce. A model should recognize new classes …