How to dp-fy ml: A practical guide to machine learning with differential privacy

N Ponomareva, H Hazimeh, A Kurakin, Z Xu… - Journal of Artificial …, 2023 - jair.org
Abstract Machine Learning (ML) models are ubiquitous in real-world applications and are a
constant focus of research. Modern ML models have become more complex, deeper, and …

Real-world data: a brief review of the methods, applications, challenges and opportunities

F Liu, D Panagiotakos - BMC Medical Research Methodology, 2022 - Springer
Background The increased adoption of the internet, social media, wearable devices, e-
health services, and other technology-driven services in medicine and healthcare has led to …

Extracting training data from diffusion models

N Carlini, J Hayes, M Nasr, M Jagielski… - 32nd USENIX Security …, 2023 - usenix.org
Image diffusion models such as DALL-E 2, Imagen, and Stable Diffusion have attracted
significant attention due to their ability to generate high-quality synthetic images. In this work …

Trustworthy llms: a survey and guideline for evaluating large language models' alignment

Y Liu, Y Yao, JF Ton, X Zhang, R Guo, H Cheng… - arxiv preprint arxiv …, 2023 - arxiv.org
Ensuring alignment, which refers to making models behave in accordance with human
intentions [1, 2], has become a critical task before deploying large language models (LLMs) …

Analyzing leakage of personally identifiable information in language models

N Lukas, A Salem, R Sim, S Tople… - … IEEE Symposium on …, 2023 - ieeexplore.ieee.org
Language Models (LMs) have been shown to leak information about training data through
sentence-level membership inference and reconstruction attacks. Understanding the risk of …

Quantifying memorization across neural language models

N Carlini, D Ippolito, M Jagielski, K Lee… - The Eleventh …, 2022 - openreview.net
Large language models (LMs) have been shown to memorize parts of their training data,
and when prompted appropriately, they will emit the memorized training data verbatim. This …

A review on fairness in machine learning

D Pessach, E Shmueli - ACM Computing Surveys (CSUR), 2022 - dl.acm.org
An increasing number of decisions regarding the daily lives of human beings are being
controlled by artificial intelligence and machine learning (ML) algorithms in spheres ranging …

Memorization without overfitting: Analyzing the training dynamics of large language models

K Tirumala, A Markosyan… - Advances in …, 2022 - proceedings.neurips.cc
Despite their wide adoption, the underlying training and memorization dynamics of very
large language models is not well understood. We empirically study exact memorization in …

On the opportunities and risks of foundation models

R Bommasani, DA Hudson, E Adeli, R Altman… - arxiv preprint arxiv …, 2021 - arxiv.org
AI is undergoing a paradigm shift with the rise of models (eg, BERT, DALL-E, GPT-3) that are
trained on broad data at scale and are adaptable to a wide range of downstream tasks. We …

Generalization in quantum machine learning from few training data

MC Caro, HY Huang, M Cerezo, K Sharma… - Nature …, 2022 - nature.com
Modern quantum machine learning (QML) methods involve variationally optimizing a
parameterized quantum circuit on a training data set, and subsequently making predictions …