Applications of machine learning to machine fault diagnosis: A review and roadmap

Y Lei, B Yang, X Jiang, F Jia, N Li, AK Nandi - Mechanical systems and …, 2020 - Elsevier
Intelligent fault diagnosis (IFD) refers to applications of machine learning theories to
machine fault diagnosis. This is a promising way to release the contribution from human …

A review on vibration-based condition monitoring of rotating machinery

M Tiboni, C Remino, R Bussola, C Amici - Applied Sciences, 2022 - mdpi.com
Monitoring vibrations in rotating machinery allows effective diagnostics, as abnormal
functioning states are related to specific patterns that can be extracted from vibration signals …

Multi-input CNN based vibro-acoustic fusion for accurate fault diagnosis of induction motor

A Choudhary, RK Mishra, S Fatima… - … Applications of Artificial …, 2023 - Elsevier
Induction motor (IM) is a highly efficient prime mover in industrial applications. To maintain
an uninterrupted operation, accurate fault diagnosis system of IM is required. It can help to …

Integrated intelligent fault diagnosis approach of offshore wind turbine bearing based on information stream fusion and semi-supervised learning

Y Zhang, K Yu, Z Lei, J Ge, Y Xu, Z Li, Z Ren… - Expert Systems with …, 2023 - Elsevier
Offshore wind turbines play a vital role in transferring wind energy to electricity, which could
help relieve the energy crisis and improve the global climate. In general, offshore wind …

Data-driven methods for predictive maintenance of industrial equipment: A survey

W Zhang, D Yang, H Wang - IEEE systems journal, 2019 - ieeexplore.ieee.org
With the tremendous revival of artificial intelligence, predictive maintenance (PdM) based on
data-driven methods has become the most effective solution to address smart manufacturing …

Planetary gearbox fault diagnosis using bidirectional-convolutional LSTM networks

J Shi, D Peng, Z Peng, Z Zhang, K Goebel… - Mechanical Systems and …, 2022 - Elsevier
Gearbox fault diagnosis is expected to significantly improve the reliability, safety and
efficiency of power transmission systems. However, planetary gearbox fault diagnosis …

A deep learning method for bearing fault diagnosis based on cyclic spectral coherence and convolutional neural networks

Z Chen, A Mauricio, W Li, K Gryllias - Mechanical Systems and Signal …, 2020 - Elsevier
Accurate fault diagnosis is critical to ensure the safe and reliable operation of rotating
machinery. Data-driven fault diagnosis techniques based on Deep Learning (DL) have …

Data fusion and machine learning for industrial prognosis: Trends and perspectives towards Industry 4.0

A Diez-Olivan, J Del Ser, D Galar, B Sierra - Information Fusion, 2019 - Elsevier
The so-called “smartization” of manufacturing industries has been conceived as the fourth
industrial revolution or Industry 4.0, a paradigm shift propelled by the upsurge and …

Deep learning for smart manufacturing: Methods and applications

J Wang, Y Ma, L Zhang, RX Gao, D Wu - Journal of manufacturing systems, 2018 - Elsevier
Smart manufacturing refers to using advanced data analytics to complement physical
science for improving system performance and decision making. With the widespread …