Quantum science with optical tweezer arrays of ultracold atoms and molecules
Single atoms and molecules can be trapped in tightly focused beams of light that form
'optical tweezers', affording exquisite capabilities for the control and detection of individual …
'optical tweezers', affording exquisite capabilities for the control and detection of individual …
Materials challenges and opportunities for quantum computing hardware
BACKGROUND The past two decades have seen intense efforts aimed at building quantum
computing hardware with the potential to solve problems that are intractable on classical …
computing hardware with the potential to solve problems that are intractable on classical …
High-fidelity parallel entangling gates on a neutral-atom quantum computer
The ability to perform entangling quantum operations with low error rates in a scalable
fashion is a central element of useful quantum information processing. Neutral-atom arrays …
fashion is a central element of useful quantum information processing. Neutral-atom arrays …
Quantum phases of matter on a 256-atom programmable quantum simulator
Motivated by far-reaching applications ranging from quantum simulations of complex
processes in physics and chemistry to quantum information processing, a broad effort is …
processes in physics and chemistry to quantum information processing, a broad effort is …
Quantum simulation for high-energy physics
It is for the first time that quantum simulation for high-energy physics (HEP) is studied in the
US decadal particle-physics community planning, and in fact until recently, this was not …
US decadal particle-physics community planning, and in fact until recently, this was not …
Erasure conversion in a high-fidelity Rydberg quantum simulator
Minimizing and understanding errors is critical for quantum science, both in noisy
intermediate scale quantum (NISQ) devices and for the quest towards fault-tolerant quantum …
intermediate scale quantum (NISQ) devices and for the quest towards fault-tolerant quantum …
Many-body physics with individually controlled Rydberg atoms
Recent decades have witnessed great developments in the field of quantum simulation—
where synthetic systems are built and studied to gain insight into complicated, many-body …
where synthetic systems are built and studied to gain insight into complicated, many-body …
Universal quantum operations and ancilla-based read-out for tweezer clocks
Enhancing the precision of measurements by harnessing entanglement is a long-sought
goal in quantum metrology,. Yet attaining the best sensitivity allowed by quantum theory in …
goal in quantum metrology,. Yet attaining the best sensitivity allowed by quantum theory in …
Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms
P Scholl, M Schuler, HJ Williams, AA Eberharter… - Nature, 2021 - nature.com
Quantum simulation using synthetic systems is a promising route to solve outstanding
quantum many-body problems in regimes where other approaches, including numerical …
quantum many-body problems in regimes where other approaches, including numerical …
[HTML][HTML] Quantum computing with neutral atoms
The manipulation of neutral atoms by light is at the heart of countless scientific discoveries in
the field of quantum physics in the last three decades. The level of control that has been …
the field of quantum physics in the last three decades. The level of control that has been …