Exploration in deep reinforcement learning: A survey

P Ladosz, L Weng, M Kim, H Oh - Information Fusion, 2022 - Elsevier
This paper reviews exploration techniques in deep reinforcement learning. Exploration
techniques are of primary importance when solving sparse reward problems. In sparse …

Modeling, diagnostics, optimization, and control of internal combustion engines via modern machine learning techniques: A review and future directions

M Aliramezani, CR Koch, M Shahbakhti - Progress in Energy and …, 2022 - Elsevier
A critical review of the existing Internal Combustion Engine (ICE) modeling, optimization,
diagnosis, and control challenges and the promising state-of-the-art Machine Learning (ML) …

SF-FWA: A self-adaptive fast fireworks algorithm for effective large-scale optimization

M Chen, Y Tan - Swarm and Evolutionary Computation, 2023 - Elsevier
Computationally efficient algorithms for large-scale black-box optimization have become
increasingly important in recent years due to the growing complexity of engineering and …

Neural network-based control using actor-critic reinforcement learning and grey wolf optimizer with experimental servo system validation

IA Zamfirache, RE Precup, RC Roman… - Expert Systems with …, 2023 - Elsevier
This paper introduces a novel reference tracking control approach implemented using a
combination of the Actor-Critic Reinforcement Learning (RL) framework and the Grey Wolf …

[LIBRO][B] Algorithms for decision making

MJ Kochenderfer, TA Wheeler, KH Wray - 2022 - books.google.com
A broad introduction to algorithms for decision making under uncertainty, introducing the
underlying mathematical problem formulations and the algorithms for solving them …

Reinforcement learning in robotic applications: a comprehensive survey

B Singh, R Kumar, VP Singh - Artificial Intelligence Review, 2022 - Springer
In recent trends, artificial intelligence (AI) is used for the creation of complex automated
control systems. Still, researchers are trying to make a completely autonomous system that …

Evolutionary machine learning: A survey

A Telikani, A Tahmassebi, W Banzhaf… - ACM Computing …, 2021 - dl.acm.org
Evolutionary Computation (EC) approaches are inspired by nature and solve optimization
problems in a stochastic manner. They can offer a reliable and effective approach to address …

Artificial intelligence: A guide for thinking humans

M Mitchell - 2019 - degruyter.com
Melanie Mitchell the Davis Professor at the Santa Fe Institute and Professor of Computer
Science at Portland State University has published a timely and stimulating book from an …

Bio-inspired computation: Where we stand and what's next

J Del Ser, E Osaba, D Molina, XS Yang… - Swarm and Evolutionary …, 2019 - Elsevier
In recent years, the research community has witnessed an explosion of literature dealing
with the mimicking of behavioral patterns and social phenomena observed in nature towards …

Recurrent world models facilitate policy evolution

D Ha, J Schmidhuber - Advances in neural information …, 2018 - proceedings.neurips.cc
A generative recurrent neural network is quickly trained in an unsupervised manner to
model popular reinforcement learning environments through compressed spatio-temporal …