Machine learning methods for small data challenges in molecular science

B Dou, Z Zhu, E Merkurjev, L Ke, L Chen… - Chemical …, 2023 - ACS Publications
Small data are often used in scientific and engineering research due to the presence of
various constraints, such as time, cost, ethics, privacy, security, and technical limitations in …

Graph neural networks in IoT: A survey

G Dong, M Tang, Z Wang, J Gao, S Guo, L Cai… - ACM Transactions on …, 2023 - dl.acm.org
The Internet of Things (IoT) boom has revolutionized almost every corner of people's daily
lives: healthcare, environment, transportation, manufacturing, supply chain, and so on. With …

A systematic survey of control techniques and applications in connected and automated vehicles

W Liu, M Hua, Z Deng, Z Meng, Y Huang… - IEEE Internet of …, 2023 - ieeexplore.ieee.org
Vehicle control is one of the most critical challenges in autonomous vehicles (AVs) and
connected and automated vehicles (CAVs), and it is paramount in vehicle safety, passenger …

Graph neural networks for intelligent transportation systems: A survey

S Rahmani, A Baghbani, N Bouguila… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Graph neural networks (GNNs) have been extensively used in a wide variety of domains in
recent years. Owing to their power in analyzing graph-structured data, they have become …

Why did the AI make that decision? Towards an explainable artificial intelligence (XAI) for autonomous driving systems

J Dong, S Chen, M Miralinaghi, T Chen, P Li… - … research part C …, 2023 - Elsevier
User trust has been identified as a critical issue that is pivotal to the success of autonomous
vehicle (AV) operations where artificial intelligence (AI) is widely adopted. For such …

Challenges and opportunities in deep reinforcement learning with graph neural networks: A comprehensive review of algorithms and applications

S Munikoti, D Agarwal, L Das… - IEEE transactions on …, 2023 - ieeexplore.ieee.org
Deep reinforcement learning (DRL) has empowered a variety of artificial intelligence fields,
including pattern recognition, robotics, recommendation systems, and gaming. Similarly …

A deep reinforcement learning‐based distributed connected automated vehicle control under communication failure

H Shi, Y Zhou, X Wang, S Fu, S Gong… - Computer‐Aided Civil …, 2022 - Wiley Online Library
This paper proposes a deep reinforcement learning (DRL)‐based distributed longitudinal
control strategy for connected and automated vehicles (CAVs) under communication failure …

Multi-agent reinforcement learning for cooperative lane changing of connected and autonomous vehicles in mixed traffic

W Zhou, D Chen, J Yan, Z Li, H Yin, W Ge - Autonomous Intelligent …, 2022 - Springer
Autonomous driving has attracted significant research interests in the past two decades as it
offers many potential benefits, including releasing drivers from exhausting driving and …

[HTML][HTML] Traffic expertise meets residual RL: Knowledge-informed model-based residual reinforcement learning for CAV trajectory control

Z Sheng, Z Huang, S Chen - Communications in Transportation Research, 2024 - Elsevier
Abstract Model-based reinforcement learning (RL) is anticipated to exhibit higher sample
efficiency than model-free RL by utilizing a virtual environment model. However, obtaining …

Space-weighted information fusion using deep reinforcement learning: The context of tactical control of lane-changing autonomous vehicles and connectivity range …

J Dong, S Chen, Y Li, R Du, A Steinfeld… - … Research Part C …, 2021 - Elsevier
The connectivity aspect of connected autonomous vehicles (CAV) is beneficial because it
facilitates dissemination of traffic-related information to vehicles through Vehicle-to-External …