Machine learning for a sustainable energy future

Z Yao, Y Lum, A Johnston, LM Mejia-Mendoza… - Nature Reviews …, 2023 - nature.com
Transitioning from fossil fuels to renewable energy sources is a critical global challenge; it
demands advances—at the materials, devices and systems levels—for the efficient …

A comprehensive review on deep learning approaches for short-term load forecasting

Y Eren, İ Küçükdemiral - Renewable and Sustainable Energy Reviews, 2024 - Elsevier
The balance between supplied and demanded power is a crucial issue in the economic
dispatching of electricity energy. With the emergence of renewable sources and data-driven …

Load forecasting techniques for power system: Research challenges and survey

N Ahmad, Y Ghadi, M Adnan, M Ali - IEEE Access, 2022 - ieeexplore.ieee.org
The main and pivot part of electric companies is the load forecasting. Decision-makers and
think tank of power sectors should forecast the future need of electricity with large accuracy …

[HTML][HTML] Methods of forecasting electric energy consumption: A literature review

RV Klyuev, ID Morgoev, AD Morgoeva, OA Gavrina… - Energies, 2022 - mdpi.com
Balancing the production and consumption of electricity is an urgent task. Its implementation
largely depends on the means and methods of planning electricity production. Forecasting is …

Optimal deep learning lstm model for electric load forecasting using feature selection and genetic algorithm: Comparison with machine learning approaches

S Bouktif, A Fiaz, A Ouni, MA Serhani - Energies, 2018 - mdpi.com
Background: With the development of smart grids, accurate electric load forecasting has
become increasingly important as it can help power companies in better load scheduling …

[HTML][HTML] Smart home energy management systems: Research challenges and survey

A Raza, L **gzhao, Y Ghadi, M Adnan, M Ali - Alexandria engineering …, 2024 - Elsevier
Electricity is establishing ground as a means of energy, and its proportion will continue to
rise in the next generations. Home energy usage is expected to increase by more than 40 …

Short-term residential load forecasting based on LSTM recurrent neural network

W Kong, ZY Dong, Y Jia, DJ Hill, Y Xu… - IEEE transactions on …, 2017 - ieeexplore.ieee.org
As the power system is facing a transition toward a more intelligent, flexible, and interactive
system with higher penetration of renewable energy generation, load forecasting, especially …

Application of big data and machine learning in smart grid, and associated security concerns: A review

E Hossain, I Khan, F Un-Noor, SS Sikander… - Ieee …, 2019 - ieeexplore.ieee.org
This paper conducts a comprehensive study on the application of big data and machine
learning in the electrical power grid introduced through the emergence of the next …

A comprehensive review of the load forecasting techniques using single and hybrid predictive models

A Al Mamun, M Sohel, N Mohammad… - IEEE …, 2020 - ieeexplore.ieee.org
Load forecasting is a pivotal part of the power utility companies. To provide load-shedding
free and uninterrupted power to the consumer, decision-makers in the utility sector must …

Short-term load forecasting with deep residual networks

K Chen, K Chen, Q Wang, Z He, J Hu… - IEEE Transactions on …, 2018 - ieeexplore.ieee.org
We present in this paper a model for forecasting short-term electric load based on deep
residual networks. The proposed model is able to integrate domain knowledge and …