Federated graph neural networks: Overview, techniques, and challenges

R Liu, P **ng, Z Deng, A Li, C Guan… - IEEE transactions on …, 2024 - ieeexplore.ieee.org
Graph neural networks (GNNs) have attracted extensive research attention in recent years
due to their capability to progress with graph data and have been widely used in practical …

Emerging trends in federated learning: From model fusion to federated x learning

S Ji, Y Tan, T Saravirta, Z Yang, Y Liu… - International Journal of …, 2024 - Springer
Federated learning is a new learning paradigm that decouples data collection and model
training via multi-party computation and model aggregation. As a flexible learning setting …

Federated learning for generalization, robustness, fairness: A survey and benchmark

W Huang, M Ye, Z Shi, G Wan, H Li… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Federated learning has emerged as a promising paradigm for privacy-preserving
collaboration among different parties. Recently, with the popularity of federated learning, an …

Rethinking federated learning with domain shift: A prototype view

W Huang, M Ye, Z Shi, H Li, B Du - 2023 IEEE/CVF Conference …, 2023 - ieeexplore.ieee.org
Federated learning shows a bright promise as a privacy-preserving collaborative learning
technique. However, prevalent solutions mainly focus on all private data sampled from the …

Structure-free graph condensation: From large-scale graphs to condensed graph-free data

X Zheng, M Zhang, C Chen… - Advances in …, 2023 - proceedings.neurips.cc
Graph condensation, which reduces the size of a large-scale graph by synthesizing a small-
scale condensed graph as its substitution, has immediate benefits for various graph learning …

Towards self-interpretable graph-level anomaly detection

Y Liu, K Ding, Q Lu, F Li… - Advances in Neural …, 2023 - proceedings.neurips.cc
Graph-level anomaly detection (GLAD) aims to identify graphs that exhibit notable
dissimilarity compared to the majority in a collection. However, current works primarily focus …

Federated graph learning under domain shift with generalizable prototypes

G Wan, W Huang, M Ye - Proceedings of the AAAI conference on …, 2024 - ojs.aaai.org
Federated Graph Learning is a privacy-preserving collaborative approach for training a
shared model on graph-structured data in the distributed environment. However, in real …

Dynamic personalized federated learning with adaptive differential privacy

X Yang, W Huang, M Ye - Advances in Neural Information …, 2023 - proceedings.neurips.cc
Personalized federated learning with differential privacy has been considered a feasible
solution to address non-IID distribution of data and privacy leakage risks. However, current …

Beyond smoothing: Unsupervised graph representation learning with edge heterophily discriminating

Y Liu, Y Zheng, D Zhang, VCS Lee, S Pan - Proceedings of the AAAI …, 2023 - ojs.aaai.org
Unsupervised graph representation learning (UGRL) has drawn increasing research
attention and achieved promising results in several graph analytic tasks. Relying on the …

Finding the missing-half: Graph complementary learning for homophily-prone and heterophily-prone graphs

Y Zheng, H Zhang, V Lee, Y Zheng… - International …, 2023 - proceedings.mlr.press
Real-world graphs generally have only one kind of tendency in their connections. These
connections are either homophilic-prone or heterophily-prone. While graphs with homophily …