Review the state-of-the-art technologies of semantic segmentation based on deep learning

Y Mo, Y Wu, X Yang, F Liu, Y Liao - Neurocomputing, 2022 - Elsevier
The goal of semantic segmentation is to segment the input image according to semantic
information and predict the semantic category of each pixel from a given label set. With the …

Knowledge distillation and student-teacher learning for visual intelligence: A review and new outlooks

L Wang, KJ Yoon - IEEE transactions on pattern analysis and …, 2021 - ieeexplore.ieee.org
Deep neural models, in recent years, have been successful in almost every field, even
solving the most complex problem statements. However, these models are huge in size with …

Daformer: Improving network architectures and training strategies for domain-adaptive semantic segmentation

L Hoyer, D Dai, L Van Gool - Proceedings of the IEEE/CVF …, 2022 - openaccess.thecvf.com
As acquiring pixel-wise annotations of real-world images for semantic segmentation is a
costly process, a model can instead be trained with more accessible synthetic data and …

Source-free domain adaptation for semantic segmentation

Y Liu, W Zhang, J Wang - … of the IEEE/CVF Conference on …, 2021 - openaccess.thecvf.com
Abstract Unsupervised Domain Adaptation (UDA) can tackle the challenge that
convolutional neural network (CNN)-based approaches for semantic segmentation heavily …

Semantic-aware domain generalized segmentation

D Peng, Y Lei, M Hayat, Y Guo… - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Deep models trained on source domain lack generalization when evaluated on unseen
target domains with different data distributions. The problem becomes even more …