Computational discovery of transition-metal complexes: from high-throughput screening to machine learning
Transition-metal complexes are attractive targets for the design of catalysts and functional
materials. The behavior of the metal–organic bond, while very tunable for achieving target …
materials. The behavior of the metal–organic bond, while very tunable for achieving target …
Machine learning for electronically excited states of molecules
Electronically excited states of molecules are at the heart of photochemistry, photophysics,
as well as photobiology and also play a role in material science. Their theoretical description …
as well as photobiology and also play a role in material science. Their theoretical description …
Molecular excited states through a machine learning lens
Theoretical simulations of electronic excitations and associated processes in molecules are
indispensable for fundamental research and technological innovations. However, such …
indispensable for fundamental research and technological innovations. However, such …
[HTML][HTML] Perspective on integrating machine learning into computational chemistry and materials science
Machine learning (ML) methods are being used in almost every conceivable area of
electronic structure theory and molecular simulation. In particular, ML has become firmly …
electronic structure theory and molecular simulation. In particular, ML has become firmly …