A comprehensive survey on deep graph representation learning

W Ju, Z Fang, Y Gu, Z Liu, Q Long, Z Qiao, Y Qin… - Neural Networks, 2024 - Elsevier
Graph representation learning aims to effectively encode high-dimensional sparse graph-
structured data into low-dimensional dense vectors, which is a fundamental task that has …

Graph condensation: A survey

X Gao, J Yu, T Chen, G Ye, W Zhang… - IEEE Transactions on …, 2025 - ieeexplore.ieee.org
The rapid growth of graph data poses significant challenges in storage, transmission, and
particularly the training of graph neural networks (GNNs). To address these challenges …

[HTML][HTML] A gentle introduction to graph neural networks

B Sanchez-Lengeling, E Reif, A Pearce, AB Wiltschko - Distill, 2021 - staging.distill.pub
A Gentle Introduction to Graph Neural Networks Distill About Prize Submit A Gentle Introduction
to Graph Neural Networks Neural networks have been adapted to leverage the structure and …

How neural networks extrapolate: From feedforward to graph neural networks

K Xu, M Zhang, J Li, SS Du, K Kawarabayashi… - arxiv preprint arxiv …, 2020 - arxiv.org
We study how neural networks trained by gradient descent extrapolate, ie, what they learn
outside the support of the training distribution. Previous works report mixed empirical results …

Provably efficient machine learning for quantum many-body problems

HY Huang, R Kueng, G Torlai, VV Albert, J Preskill - Science, 2022 - science.org
Classical machine learning (ML) provides a potentially powerful approach to solving
challenging quantum many-body problems in physics and chemistry. However, the …

Improving graph neural network expressivity via subgraph isomorphism counting

G Bouritsas, F Frasca, S Zafeiriou… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
While Graph Neural Networks (GNNs) have achieved remarkable results in a variety of
applications, recent studies exposed important shortcomings in their ability to capture the …

Machine learning on graphs: A model and comprehensive taxonomy

I Chami, S Abu-El-Haija, B Perozzi, C Ré… - Journal of Machine …, 2022 - jmlr.org
There has been a surge of recent interest in graph representation learning (GRL). GRL
methods have generally fallen into three main categories, based on the availability of …

Generalization and representational limits of graph neural networks

V Garg, S Jegelka, T Jaakkola - International Conference on …, 2020 - proceedings.mlr.press
We address two fundamental questions about graph neural networks (GNNs). First, we
prove that several important graph properties, eg, shortest/longest cycle, diameter, or certain …

Finite versus infinite neural networks: an empirical study

J Lee, S Schoenholz, J Pennington… - Advances in …, 2020 - proceedings.neurips.cc
We perform a careful, thorough, and large scale empirical study of the correspondence
between wide neural networks and kernel methods. By doing so, we resolve a variety of …

Demystifying structural disparity in graph neural networks: Can one size fit all?

H Mao, Z Chen, W **, H Han, Y Ma… - Advances in neural …, 2024 - proceedings.neurips.cc
Abstract Recent studies on Graph Neural Networks (GNNs) provide both empirical and
theoretical evidence supporting their effectiveness in capturing structural patterns on both …