GAN-based anomaly detection: A review

X **a, X Pan, N Li, X He, L Ma, X Zhang, N Ding - Neurocomputing, 2022 - Elsevier
Supervised learning algorithms have shown limited use in the field of anomaly detection due
to the unpredictability and difficulty in acquiring abnormal samples. In recent years …

Domain generalization: A survey

K Zhou, Z Liu, Y Qiao, T **ang… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Generalization to out-of-distribution (OOD) data is a capability natural to humans yet
challenging for machines to reproduce. This is because most learning algorithms strongly …

Robust test-time adaptation in dynamic scenarios

L Yuan, B **e, S Li - … of the IEEE/CVF Conference on …, 2023 - openaccess.thecvf.com
Test-time adaptation (TTA) intends to adapt the pretrained model to test distributions with
only unlabeled test data streams. Most of the previous TTA methods have achieved great …

Towards out-of-distribution generalization: A survey

J Liu, Z Shen, Y He, X Zhang, R Xu, H Yu… - arxiv preprint arxiv …, 2021 - arxiv.org
Traditional machine learning paradigms are based on the assumption that both training and
test data follow the same statistical pattern, which is mathematically referred to as …

A fourier-based framework for domain generalization

Q Xu, R Zhang, Y Zhang, Y Wang… - Proceedings of the …, 2021 - openaccess.thecvf.com
Modern deep neural networks suffer from performance degradation when evaluated on
testing data under different distributions from training data. Domain generalization aims at …

Exact feature distribution matching for arbitrary style transfer and domain generalization

Y Zhang, M Li, R Li, K Jia… - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Arbitrary style transfer (AST) and domain generalization (DG) are important yet challenging
visual learning tasks, which can be cast as a feature distribution matching problem. With the …

Generalizing to unseen domains: A survey on domain generalization

J Wang, C Lan, C Liu, Y Ouyang, T Qin… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Machine learning systems generally assume that the training and testing distributions are
the same. To this end, a key requirement is to develop models that can generalize to unseen …

Feddg: Federated domain generalization on medical image segmentation via episodic learning in continuous frequency space

Q Liu, C Chen, J Qin, Q Dou… - Proceedings of the IEEE …, 2021 - openaccess.thecvf.com
Federated learning allows distributed medical institutions to collaboratively learn a shared
prediction model with privacy protection. While at clinical deployment, the models trained in …

Learning to diversify for single domain generalization

Z Wang, Y Luo, R Qiu, Z Huang… - Proceedings of the …, 2021 - openaccess.thecvf.com
Abstract Domain generalization (DG) aims to generalize a model trained on multiple source
(ie, training) domains to a distributionally different target (ie, test) domain. In contrast to the …

Fedsr: A simple and effective domain generalization method for federated learning

AT Nguyen, P Torr, SN Lim - Advances in Neural …, 2022 - proceedings.neurips.cc
Federated Learning (FL) refers to the decentralized and privacy-preserving machine
learning framework in which multiple clients collaborate (with the help of a central server) to …