Explainable ai: A review of machine learning interpretability methods

P Linardatos, V Papastefanopoulos, S Kotsiantis - Entropy, 2020 - mdpi.com
Recent advances in artificial intelligence (AI) have led to its widespread industrial adoption,
with machine learning systems demonstrating superhuman performance in a significant …

Advances in adversarial attacks and defenses in computer vision: A survey

N Akhtar, A Mian, N Kardan, M Shah - IEEE Access, 2021 - ieeexplore.ieee.org
Deep Learning is the most widely used tool in the contemporary field of computer vision. Its
ability to accurately solve complex problems is employed in vision research to learn deep …

Toward causal representation learning

B Schölkopf, F Locatello, S Bauer, NR Ke… - Proceedings of the …, 2021 - ieeexplore.ieee.org
The two fields of machine learning and graphical causality arose and are developed
separately. However, there is, now, cross-pollination and increasing interest in both fields to …

Gmmseg: Gaussian mixture based generative semantic segmentation models

C Liang, W Wang, J Miao… - Advances in Neural …, 2022 - proceedings.neurips.cc
Prevalent semantic segmentation solutions are, in essence, a dense discriminative classifier
of p (class| pixel feature). Though straightforward, this de facto paradigm neglects the …

Recent advances in adversarial training for adversarial robustness

T Bai, J Luo, J Zhao, B Wen, Q Wang - arxiv preprint arxiv:2102.01356, 2021 - arxiv.org
Adversarial training is one of the most effective approaches defending against adversarial
examples for deep learning models. Unlike other defense strategies, adversarial training …

Shortcut learning in deep neural networks

R Geirhos, JH Jacobsen, C Michaelis… - Nature Machine …, 2020 - nature.com
Deep learning has triggered the current rise of artificial intelligence and is the workhorse of
today's machine intelligence. Numerous success stories have rapidly spread all over …

On adaptive attacks to adversarial example defenses

F Tramer, N Carlini, W Brendel… - Advances in neural …, 2020 - proceedings.neurips.cc
Adaptive attacks have (rightfully) become the de facto standard for evaluating defenses to
adversarial examples. We find, however, that typical adaptive evaluations are incomplete …

Secure and robust machine learning for healthcare: A survey

A Qayyum, J Qadir, M Bilal… - IEEE Reviews in …, 2020 - ieeexplore.ieee.org
Recent years have witnessed widespread adoption of machine learning (ML)/deep learning
(DL) techniques due to their superior performance for a variety of healthcare applications …

Adversarial attacks and defenses in deep learning: From a perspective of cybersecurity

S Zhou, C Liu, D Ye, T Zhu, W Zhou, PS Yu - ACM Computing Surveys, 2022 - dl.acm.org
The outstanding performance of deep neural networks has promoted deep learning
applications in a broad set of domains. However, the potential risks caused by adversarial …