Deep learning for 3d point clouds: A survey
Point cloud learning has lately attracted increasing attention due to its wide applications in
many areas, such as computer vision, autonomous driving, and robotics. As a dominating …
many areas, such as computer vision, autonomous driving, and robotics. As a dominating …
Lidar for autonomous driving: The principles, challenges, and trends for automotive lidar and perception systems
Autonomous vehicles rely on their perception systems to acquire information about their
immediate surroundings. It is necessary to detect the presence of other vehicles …
immediate surroundings. It is necessary to detect the presence of other vehicles …
Tri-perspective view for vision-based 3d semantic occupancy prediction
Modern methods for vision-centric autonomous driving perception widely adopt the bird's-
eye-view (BEV) representation to describe a 3D scene. Despite its better efficiency than …
eye-view (BEV) representation to describe a 3D scene. Despite its better efficiency than …
Rethinking range view representation for lidar segmentation
LiDAR segmentation is crucial for autonomous driving perception. Recent trends favor point-
or voxel-based methods as they often yield better performance than the traditional range …
or voxel-based methods as they often yield better performance than the traditional range …
Spherical transformer for lidar-based 3d recognition
LiDAR-based 3D point cloud recognition has benefited various applications. Without
specially considering the LiDAR point distribution, most current methods suffer from …
specially considering the LiDAR point distribution, most current methods suffer from …
Robo3d: Towards robust and reliable 3d perception against corruptions
The robustness of 3D perception systems under natural corruptions from environments and
sensors is pivotal for safety-critical applications. Existing large-scale 3D perception datasets …
sensors is pivotal for safety-critical applications. Existing large-scale 3D perception datasets …
2dpass: 2d priors assisted semantic segmentation on lidar point clouds
As camera and LiDAR sensors capture complementary information in autonomous driving,
great efforts have been made to conduct semantic segmentation through multi-modality data …
great efforts have been made to conduct semantic segmentation through multi-modality data …
Scene as occupancy
Human driver can easily describe the complex traffic scene by visual system. Such an ability
of precise perception is essential for driver's planning. To achieve this, a geometry-aware …
of precise perception is essential for driver's planning. To achieve this, a geometry-aware …
Point-to-voxel knowledge distillation for lidar semantic segmentation
This article addresses the problem of distilling knowledge from a large teacher model to a
slim student network for LiDAR semantic segmentation. Directly employing previous …
slim student network for LiDAR semantic segmentation. Directly employing previous …
Cylindrical and asymmetrical 3d convolution networks for lidar segmentation
State-of-the-art methods for large-scale driving-scene LiDAR segmentation often project the
point clouds to 2D space and then process them via 2D convolution. Although this …
point clouds to 2D space and then process them via 2D convolution. Although this …