A review of wind speed and wind power forecasting with deep neural networks
The use of wind power, a pollution-free and renewable form of energy, to generate electricity
has attracted increasing attention. However, intermittent electricity generation resulting from …
has attracted increasing attention. However, intermittent electricity generation resulting from …
Machine learning driven smart electric power systems: Current trends and new perspectives
MS Ibrahim, W Dong, Q Yang - Applied Energy, 2020 - Elsevier
The current power systems are undergoing a rapid transition towards their more active,
flexible, and intelligent counterpart smart grid, which brings about tremendous challenges in …
flexible, and intelligent counterpart smart grid, which brings about tremendous challenges in …
Dispersed foraging slime mould algorithm: Continuous and binary variants for global optimization and wrapper-based feature selection
J Hu, W Gui, AA Heidari, Z Cai, G Liang, H Chen… - Knowledge-Based …, 2022 - Elsevier
The slime mould algorithm (SMA) is a logical swarm-based stochastic optimizer that is easy
to understand and has a strong optimization capability. However, the SMA is not suitable for …
to understand and has a strong optimization capability. However, the SMA is not suitable for …
Improving streamflow prediction using a new hybrid ELM model combined with hybrid particle swarm optimization and grey wolf optimization
Accurate runoff estimation is crucial for optimal reservoir operation and irrigation purposes.
In this study, a novel hybrid method is proposed for monthly runoff prediction in Mangla …
In this study, a novel hybrid method is proposed for monthly runoff prediction in Mangla …
Mean–variance portfolio optimization using machine learning-based stock price prediction
W Chen, H Zhang, MK Mehlawat, L Jia - Applied Soft Computing, 2021 - Elsevier
The success of portfolio construction depends primarily on the future performance of stock
markets. Recent developments in machine learning have brought significant opportunities to …
markets. Recent developments in machine learning have brought significant opportunities to …
A convolutional Transformer-based truncated Gaussian density network with data denoising for wind speed forecasting
Y Wang, H Xu, M Song, F Zhang, Y Li, S Zhou, L Zhang - Applied Energy, 2023 - Elsevier
Wind speed forecasting plays an important role in the stable operation of wind energy power
systems. However, accurate and reliable wind speed forecasting faces four challenges: how …
systems. However, accurate and reliable wind speed forecasting faces four challenges: how …
Boosting whale optimization with evolution strategy and Gaussian random walks: An image segmentation method
AG Hussien, AA Heidari, X Ye, G Liang, H Chen… - Engineering with …, 2023 - Springer
Stochastic optimization has been found in many applications, especially for several local
optima problems, because of their ability to explore and exploit various zones of the feature …
optima problems, because of their ability to explore and exploit various zones of the feature …
Image segmentation of Leaf Spot Diseases on Maize using multi-stage Cauchy-enabled grey wolf algorithm
H Yu, J Song, C Chen, AA Heidari, J Liu, H Chen… - … Applications of Artificial …, 2022 - Elsevier
Grey wolf optimizer (GWO) is a widespread metaphor-based algorithm based on the
enhanced variants of velocity-free particle swarm optimizer with proven defects and …
enhanced variants of velocity-free particle swarm optimizer with proven defects and …
Boosted kernel search: Framework, analysis and case studies on the economic emission dispatch problem
R Dong, H Chen, AA Heidari, H Turabieh… - Knowledge-Based …, 2021 - Elsevier
In recent years, a variety of meta-heuristic nature-inspired algorithms have been proposed to
solve complex optimization problems. However, these algorithms suffer from the …
solve complex optimization problems. However, these algorithms suffer from the …
Weather impact on solar farm performance: a comparative analysis of machine learning techniques
Forecasting the performance and energy yield of photovoltaic (PV) farms is crucial for
establishing the economic sustainability of a newly installed system. The present study aims …
establishing the economic sustainability of a newly installed system. The present study aims …