Reinforcement learning algorithms: A brief survey
Reinforcement Learning (RL) is a machine learning (ML) technique to learn sequential
decision-making in complex problems. RL is inspired by trial-and-error based human/animal …
decision-making in complex problems. RL is inspired by trial-and-error based human/animal …
Intelligent control of multilegged robot smooth motion: a review
Y Zhao, J Wang, G Cao, Y Yuan, X Yao, L Qi - IEEE Access, 2023 - ieeexplore.ieee.org
Motion control is crucial for multilegged robot locomotion and task completion. This study
aims to address the fundamental challenges of inadequate foot tracking and weak leg …
aims to address the fundamental challenges of inadequate foot tracking and weak leg …
Toward causal representation learning
The two fields of machine learning and graphical causality arose and are developed
separately. However, there is, now, cross-pollination and increasing interest in both fields to …
separately. However, there is, now, cross-pollination and increasing interest in both fields to …
Mastering atari with discrete world models
Intelligent agents need to generalize from past experience to achieve goals in complex
environments. World models facilitate such generalization and allow learning behaviors …
environments. World models facilitate such generalization and allow learning behaviors …
Can deep learning beat numerical weather prediction?
The recent hype about artificial intelligence has sparked renewed interest in applying the
successful deep learning (DL) methods for image recognition, speech recognition, robotics …
successful deep learning (DL) methods for image recognition, speech recognition, robotics …
Predrnn: A recurrent neural network for spatiotemporal predictive learning
The predictive learning of spatiotemporal sequences aims to generate future images by
learning from the historical context, where the visual dynamics are believed to have modular …
learning from the historical context, where the visual dynamics are believed to have modular …
Offline reinforcement learning: Tutorial, review, and perspectives on open problems
In this tutorial article, we aim to provide the reader with the conceptual tools needed to get
started on research on offline reinforcement learning algorithms: reinforcement learning …
started on research on offline reinforcement learning algorithms: reinforcement learning …
Planning with theory of mind
Understanding Theory of Mind should begin with an analysis of the problems it solves. The
traditional answer is that Theory of Mind is used for predicting others' thoughts and actions …
traditional answer is that Theory of Mind is used for predicting others' thoughts and actions …
First order motion model for image animation
Image animation consists of generating a video sequence so that an object in a source
image is animated according to the motion of a driving video. Our framework addresses this …
image is animated according to the motion of a driving video. Our framework addresses this …
Reinforcement learning with action-free pre-training from videos
Recent unsupervised pre-training methods have shown to be effective on language and
vision domains by learning useful representations for multiple downstream tasks. In this …
vision domains by learning useful representations for multiple downstream tasks. In this …