[HTML][HTML] A review of uncertainty quantification in deep learning: Techniques, applications and challenges

M Abdar, F Pourpanah, S Hussain, D Rezazadegan… - Information fusion, 2021 - Elsevier
Uncertainty quantification (UQ) methods play a pivotal role in reducing the impact of
uncertainties during both optimization and decision making processes. They have been …

[HTML][HTML] Trustworthy clinical AI solutions: a unified review of uncertainty quantification in deep learning models for medical image analysis

B Lambert, F Forbes, S Doyle, H Dehaene… - Artificial Intelligence in …, 2024 - Elsevier
The full acceptance of Deep Learning (DL) models in the clinical field is rather low with
respect to the quantity of high-performing solutions reported in the literature. End users are …

Robots that ask for help: Uncertainty alignment for large language model planners

AZ Ren, A Dixit, A Bodrova, S Singh, S Tu… - arxiv preprint arxiv …, 2023 - arxiv.org
Large language models (LLMs) exhibit a wide range of promising capabilities--from step-by-
step planning to commonsense reasoning--that may provide utility for robots, but remain …

A gentle introduction to conformal prediction and distribution-free uncertainty quantification

AN Angelopoulos, S Bates - arxiv preprint arxiv:2107.07511, 2021 - arxiv.org
Black-box machine learning models are now routinely used in high-risk settings, like
medical diagnostics, which demand uncertainty quantification to avoid consequential model …

Uncertainty quantification over graph with conformalized graph neural networks

K Huang, Y **, E Candes… - Advances in Neural …, 2024 - proceedings.neurips.cc
Abstract Graph Neural Networks (GNNs) are powerful machine learning prediction models
on graph-structured data. However, GNNs lack rigorous uncertainty estimates, limiting their …

Distribution-free, risk-controlling prediction sets

S Bates, A Angelopoulos, L Lei, J Malik… - Journal of the ACM …, 2021 - dl.acm.org
While improving prediction accuracy has been the focus of machine learning in recent years,
this alone does not suffice for reliable decision-making. Deploying learning systems in …

Conformal time-series forecasting

K Stankeviciute, AM Alaa… - Advances in neural …, 2021 - proceedings.neurips.cc
Current approaches for multi-horizon time series forecasting using recurrent neural networks
(RNNs) focus on issuing point estimates, which is insufficient for decision-making in critical …

Image-to-image regression with distribution-free uncertainty quantification and applications in imaging

AN Angelopoulos, AP Kohli, S Bates… - International …, 2022 - proceedings.mlr.press
Image-to-image regression is an important learning task, used frequently in biological
imaging. Current algorithms, however, do not generally offer statistical guarantees that …

Conformal risk control

AN Angelopoulos, S Bates, A Fisch, L Lei… - arxiv preprint arxiv …, 2022 - arxiv.org
We extend conformal prediction to control the expected value of any monotone loss function.
The algorithm generalizes split conformal prediction together with its coverage guarantee …

Testing for outliers with conformal p-values

S Bates, E Candès, L Lei, Y Romano… - The Annals of …, 2023 - projecteuclid.org
Testing for outliers with conformal p-values Page 1 The Annals of Statistics 2023, Vol. 51, No.
1, 149–178 https://doi.org/10.1214/22-AOS2244 © Institute of Mathematical Statistics, 2023 …