Machine learning for alloys

GLW Hart, T Mueller, C Toher, S Curtarolo - Nature Reviews Materials, 2021 - nature.com
Alloy modelling has a history of machine-learning-like approaches, preceding the tide of
data-science-inspired work. The dawn of computational databases has made the integration …

MACE: Higher order equivariant message passing neural networks for fast and accurate force fields

I Batatia, DP Kovacs, G Simm… - Advances in Neural …, 2022 - proceedings.neurips.cc
Creating fast and accurate force fields is a long-standing challenge in computational
chemistry and materials science. Recently, Equivariant Message Passing Neural Networks …

Interatomic potentials: Achievements and challenges

MH Müser, SV Sukhomlinov, L Pastewka - Advances in Physics: X, 2023 - Taylor & Francis
Interatomic potentials approximate the potential energy of atoms as a function of their
coordinates. Their main application is the effective simulation of many-atom systems. Here …

GPUMD: A package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations

Z Fan, Y Wang, P Ying, K Song, J Wang… - The Journal of …, 2022 - pubs.aip.org
We present our latest advancements of machine-learned potentials (MLPs) based on the
neuroevolution potential (NEP) framework introduced in Fan et al.[Phys. Rev. B 104, 104309 …

The design space of E (3)-equivariant atom-centred interatomic potentials

I Batatia, S Batzner, DP Kovács, A Musaelian… - Nature Machine …, 2025 - nature.com
Molecular dynamics simulation is an important tool in computational materials science and
chemistry, and in the past decade it has been revolutionized by machine learning. This rapid …

[HTML][HTML] Evaluation of the MACE force field architecture: From medicinal chemistry to materials science

DP Kovács, I Batatia, ES Arany… - The Journal of Chemical …, 2023 - pubs.aip.org
The MACE architecture represents the state of the art in the field of machine learning force
fields for a variety of in-domain, extrapolation, and low-data regime tasks. In this paper, we …

Artificial intelligence for science in quantum, atomistic, and continuum systems

X Zhang, L Wang, J Helwig, Y Luo, C Fu, Y **e… - arxiv preprint arxiv …, 2023 - arxiv.org
Advances in artificial intelligence (AI) are fueling a new paradigm of discoveries in natural
sciences. Today, AI has started to advance natural sciences by improving, accelerating, and …

MACE-OFF23: Transferable machine learning force fields for organic molecules

DP Kovács, JH Moore, NJ Browning, I Batatia… - arxiv preprint arxiv …, 2023 - arxiv.org
Classical empirical force fields have dominated biomolecular simulation for over 50 years.
Although widely used in drug discovery, crystal structure prediction, and biomolecular …

Linear atomic cluster expansion force fields for organic molecules: beyond rmse

DP Kovács, C Oord, J Kucera, AEA Allen… - Journal of chemical …, 2021 - ACS Publications
We demonstrate that fast and accurate linear force fields can be built for molecules using the
atomic cluster expansion (ACE) framework. The ACE models parametrize the potential …

Performant implementation of the atomic cluster expansion (PACE) and application to copper and silicon

Y Lysogorskiy, C Oord, A Bochkarev, S Menon… - npj computational …, 2021 - nature.com
The atomic cluster expansion is a general polynomial expansion of the atomic energy in
multi-atom basis functions. Here we implement the atomic cluster expansion in the …