A comprehensive survey of continual learning: theory, method and application
To cope with real-world dynamics, an intelligent system needs to incrementally acquire,
update, accumulate, and exploit knowledge throughout its lifetime. This ability, known as …
update, accumulate, and exploit knowledge throughout its lifetime. This ability, known as …
Revisiting class-incremental learning with pre-trained models: Generalizability and adaptivity are all you need
Class-incremental learning (CIL) aims to adapt to emerging new classes without forgetting
old ones. Traditional CIL models are trained from scratch to continually acquire knowledge …
old ones. Traditional CIL models are trained from scratch to continually acquire knowledge …
Class-incremental learning: A survey
Deep models, eg, CNNs and Vision Transformers, have achieved impressive achievements
in many vision tasks in the closed world. However, novel classes emerge from time to time in …
in many vision tasks in the closed world. However, novel classes emerge from time to time in …
Modular deep learning
Transfer learning has recently become the dominant paradigm of machine learning. Pre-
trained models fine-tuned for downstream tasks achieve better performance with fewer …
trained models fine-tuned for downstream tasks achieve better performance with fewer …
A model or 603 exemplars: Towards memory-efficient class-incremental learning
Real-world applications require the classification model to adapt to new classes without
forgetting old ones. Correspondingly, Class-Incremental Learning (CIL) aims to train a …
forgetting old ones. Correspondingly, Class-Incremental Learning (CIL) aims to train a …
New insights on reducing abrupt representation change in online continual learning
In the online continual learning paradigm, agents must learn from a changing distribution
while respecting memory and compute constraints. Experience Replay (ER), where a small …
while respecting memory and compute constraints. Experience Replay (ER), where a small …
Machine learning for service migration: a survey
Future communication networks are envisioned to satisfy increasingly granular and dynamic
requirements to accommodate the application and user demands. Indeed, novel immersive …
requirements to accommodate the application and user demands. Indeed, novel immersive …
Learnability and algorithm for continual learning
This paper studies the challenging continual learning (CL) setting of Class Incremental
Learning (CIL). CIL learns a sequence of tasks consisting of disjoint sets of concepts or …
Learning (CIL). CIL learns a sequence of tasks consisting of disjoint sets of concepts or …
Combining parameter-efficient modules for task-level generalisation
A modular design encourages neural models to disentangle and recombine different facets
of knowledge to generalise more systematically to new tasks. In this work, we assume that …
of knowledge to generalise more systematically to new tasks. In this work, we assume that …
Dynamically expandable graph convolution for streaming recommendation
Personalized recommender systems have been widely studied and deployed to reduce
information overload and satisfy users' diverse needs. However, conventional …
information overload and satisfy users' diverse needs. However, conventional …