Machine learning in modelling land-use and land cover-change (LULCC): Current status, challenges and prospects

J Wang, M Bretz, MAA Dewan, MA Delavar - Science of The Total …, 2022 - Elsevier
Land-use and land-cover change (LULCC) are of importance in natural resource
management, environmental modelling and assessment, and agricultural production …

Potential sources of sensor data anomalies for autonomous vehicles: An overview from road vehicle safety perspective

X Zhao, Y Fang, H Min, X Wu, W Wang… - Expert Systems with …, 2024 - Elsevier
Outstanding steps towards intelligent transportation systems with autonomous vehicles have
been taken in the past few years. Nevertheless, the safety issue in autonomous vehicles is …

Multimodal fusion transformer for remote sensing image classification

SK Roy, A Deria, D Hong, B Rasti… - … on Geoscience and …, 2023 - ieeexplore.ieee.org
Vision transformers (ViTs) have been trending in image classification tasks due to their
promising performance when compared with convolutional neural networks (CNNs). As a …

Spectral–spatial morphological attention transformer for hyperspectral image classification

SK Roy, A Deria, C Shah, JM Haut… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
In recent years, convolutional neural networks (CNNs) have drawn significant attention for
the classification of hyperspectral images (HSIs). Due to their self-attention mechanism, the …

[HTML][HTML] Deep learning classifiers for hyperspectral imaging: A review

ME Paoletti, JM Haut, J Plaza, A Plaza - ISPRS Journal of Photogrammetry …, 2019 - Elsevier
Advances in computing technology have fostered the development of new and powerful
deep learning (DL) techniques, which have demonstrated promising results in a wide range …

Feature extraction for hyperspectral imagery: The evolution from shallow to deep: Overview and toolbox

B Rasti, D Hong, R Hang, P Ghamisi… - … and Remote Sensing …, 2020 - ieeexplore.ieee.org
Hyperspectral images (HSIs) provide detailed spectral information through hundreds of
(narrow) spectral channels (also known as dimensionality or bands), which can be used to …

Cooperated spectral low-rankness prior and deep spatial prior for HSI unsupervised denoising

Q Zhang, Q Yuan, M Song, H Yu… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Model-driven methods and data-driven methods have been widely developed for
hyperspectral image (HSI) denoising. However, there are pros and cons in both model …

Integration of hyperspectral imaging and autoencoders: Benefits, applications, hyperparameter tunning and challenges

G Jaiswal, R Rani, H Mangotra, A Sharma - Computer Science Review, 2023 - Elsevier
Hyperspectral imaging (HSI) is a powerful tool that can capture and analyze a range of
spectral bands, providing unparalleled levels of precision and accuracy in data analysis …

Hyperspectral image denoising: From model-driven, data-driven, to model-data-driven

Q Zhang, Y Zheng, Q Yuan, M Song… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Mixed noise pollution in HSI severely disturbs subsequent interpretations and applications.
In this technical review, we first give the noise analysis in different noisy HSIs and conclude …

Image restoration for remote sensing: Overview and toolbox

B Rasti, Y Chang, E Dalsasso, L Denis… - IEEE Geoscience and …, 2021 - ieeexplore.ieee.org
Remote sensing provides valuable information about objects and areas from a distance in
either active (eg, radar and lidar) or passive (eg, multispectral and hyperspectral) modes …