Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Ai alignment: A comprehensive survey
AI alignment aims to make AI systems behave in line with human intentions and values. As
AI systems grow more capable, so do risks from misalignment. To provide a comprehensive …
AI systems grow more capable, so do risks from misalignment. To provide a comprehensive …
[HTML][HTML] How are reinforcement learning and deep learning algorithms used for big data based decision making in financial industries–A review and research agenda
V Singh, SS Chen, M Singhania, B Nanavati… - International Journal of …, 2022 - Elsevier
Data availability and accessibility have brought in unseen changes in the finance systems
and new theoretical and computational challenges. For example, in contrast to classical …
and new theoretical and computational challenges. For example, in contrast to classical …
Building cooperative embodied agents modularly with large language models
In this work, we address challenging multi-agent cooperation problems with decentralized
control, raw sensory observations, costly communication, and multi-objective tasks …
control, raw sensory observations, costly communication, and multi-objective tasks …
Mastering the game of Stratego with model-free multiagent reinforcement learning
We introduce DeepNash, an autonomous agent that plays the imperfect information game
Stratego at a human expert level. Stratego is one of the few iconic board games that artificial …
Stratego at a human expert level. Stratego is one of the few iconic board games that artificial …
Video pretraining (vpt): Learning to act by watching unlabeled online videos
Pretraining on noisy, internet-scale datasets has been heavily studied as a technique for
training models with broad, general capabilities for text, images, and other modalities …
training models with broad, general capabilities for text, images, and other modalities …
Compute trends across three eras of machine learning
Compute, data, and algorithmic advances are the three fundamental factors that drive
progress in modern Machine Learning (ML). In this paper we study trends in the most readily …
progress in modern Machine Learning (ML). In this paper we study trends in the most readily …
Multi-agent deep reinforcement learning: a survey
The advances in reinforcement learning have recorded sublime success in various domains.
Although the multi-agent domain has been overshadowed by its single-agent counterpart …
Although the multi-agent domain has been overshadowed by its single-agent counterpart …
From attribution maps to human-understandable explanations through concept relevance propagation
The field of explainable artificial intelligence (XAI) aims to bring transparency to today's
powerful but opaque deep learning models. While local XAI methods explain individual …
powerful but opaque deep learning models. While local XAI methods explain individual …
Habitat 3.0: A co-habitat for humans, avatars and robots
We present Habitat 3.0: a simulation platform for studying collaborative human-robot tasks in
home environments. Habitat 3.0 offers contributions across three dimensions:(1) Accurate …
home environments. Habitat 3.0 offers contributions across three dimensions:(1) Accurate …
Meta-learning in neural networks: A survey
The field of meta-learning, or learning-to-learn, has seen a dramatic rise in interest in recent
years. Contrary to conventional approaches to AI where tasks are solved from scratch using …
years. Contrary to conventional approaches to AI where tasks are solved from scratch using …