Ai alignment: A comprehensive survey
AI alignment aims to make AI systems behave in line with human intentions and values. As
AI systems grow more capable, the potential large-scale risks associated with misaligned AI …
AI systems grow more capable, the potential large-scale risks associated with misaligned AI …
Reinforcement learning and its applications in modern power and energy systems: A review
With the growing integration of distributed energy resources (DERs), flexible loads, and
other emerging technologies, there are increasing complexities and uncertainties for …
other emerging technologies, there are increasing complexities and uncertainties for …
Video pretraining (vpt): Learning to act by watching unlabeled online videos
Pretraining on noisy, internet-scale datasets has been heavily studied as a technique for
training models with broad, general capabilities for text, images, and other modalities …
training models with broad, general capabilities for text, images, and other modalities …
From attribution maps to human-understandable explanations through concept relevance propagation
The field of explainable artificial intelligence (XAI) aims to bring transparency to today's
powerful but opaque deep learning models. While local XAI methods explain individual …
powerful but opaque deep learning models. While local XAI methods explain individual …
Mastering the game of Stratego with model-free multiagent reinforcement learning
We introduce DeepNash, an autonomous agent that plays the imperfect information game
Stratego at a human expert level. Stratego is one of the few iconic board games that artificial …
Stratego at a human expert level. Stratego is one of the few iconic board games that artificial …
Compute trends across three eras of machine learning
Compute, data, and algorithmic advances are the three fundamental factors that drive
progress in modern Machine Learning (ML). In this paper we study trends in the most readily …
progress in modern Machine Learning (ML). In this paper we study trends in the most readily …
Multi-agent deep reinforcement learning: a survey
The advances in reinforcement learning have recorded sublime success in various domains.
Although the multi-agent domain has been overshadowed by its single-agent counterpart …
Although the multi-agent domain has been overshadowed by its single-agent counterpart …
Meta-learning in neural networks: A survey
The field of meta-learning, or learning-to-learn, has seen a dramatic rise in interest in recent
years. Contrary to conventional approaches to AI where tasks are solved from scratch using …
years. Contrary to conventional approaches to AI where tasks are solved from scratch using …
Curl: Contrastive unsupervised representations for reinforcement learning
Abstract We present CURL: Contrastive Unsupervised Representations for Reinforcement
Learning. CURL extracts high-level features from raw pixels using contrastive learning and …
Learning. CURL extracts high-level features from raw pixels using contrastive learning and …
Dota 2 with large scale deep reinforcement learning
C Berner, G Brockman, B Chan, V Cheung… - arxiv preprint arxiv …, 2019 - arxiv.org
On April 13th, 2019, OpenAI Five became the first AI system to defeat the world champions
at an esports game. The game of Dota 2 presents novel challenges for AI systems such as …
at an esports game. The game of Dota 2 presents novel challenges for AI systems such as …