Ai alignment: A comprehensive survey

J Ji, T Qiu, B Chen, B Zhang, H Lou, K Wang… - arxiv preprint arxiv …, 2023 - arxiv.org
AI alignment aims to make AI systems behave in line with human intentions and values. As
AI systems grow more capable, the potential large-scale risks associated with misaligned AI …

Reinforcement learning and its applications in modern power and energy systems: A review

D Cao, W Hu, J Zhao, G Zhang, B Zhang… - Journal of modern …, 2020 - ieeexplore.ieee.org
With the growing integration of distributed energy resources (DERs), flexible loads, and
other emerging technologies, there are increasing complexities and uncertainties for …

Video pretraining (vpt): Learning to act by watching unlabeled online videos

B Baker, I Akkaya, P Zhokov… - Advances in …, 2022 - proceedings.neurips.cc
Pretraining on noisy, internet-scale datasets has been heavily studied as a technique for
training models with broad, general capabilities for text, images, and other modalities …

From attribution maps to human-understandable explanations through concept relevance propagation

R Achtibat, M Dreyer, I Eisenbraun, S Bosse… - Nature Machine …, 2023 - nature.com
The field of explainable artificial intelligence (XAI) aims to bring transparency to today's
powerful but opaque deep learning models. While local XAI methods explain individual …

Mastering the game of Stratego with model-free multiagent reinforcement learning

J Perolat, B De Vylder, D Hennes, E Tarassov, F Strub… - Science, 2022 - science.org
We introduce DeepNash, an autonomous agent that plays the imperfect information game
Stratego at a human expert level. Stratego is one of the few iconic board games that artificial …

Compute trends across three eras of machine learning

J Sevilla, L Heim, A Ho, T Besiroglu… - … Joint Conference on …, 2022 - ieeexplore.ieee.org
Compute, data, and algorithmic advances are the three fundamental factors that drive
progress in modern Machine Learning (ML). In this paper we study trends in the most readily …

Multi-agent deep reinforcement learning: a survey

S Gronauer, K Diepold - Artificial Intelligence Review, 2022 - Springer
The advances in reinforcement learning have recorded sublime success in various domains.
Although the multi-agent domain has been overshadowed by its single-agent counterpart …

Meta-learning in neural networks: A survey

T Hospedales, A Antoniou, P Micaelli… - IEEE transactions on …, 2021 - ieeexplore.ieee.org
The field of meta-learning, or learning-to-learn, has seen a dramatic rise in interest in recent
years. Contrary to conventional approaches to AI where tasks are solved from scratch using …

Curl: Contrastive unsupervised representations for reinforcement learning

M Laskin, A Srinivas, P Abbeel - International conference on …, 2020 - proceedings.mlr.press
Abstract We present CURL: Contrastive Unsupervised Representations for Reinforcement
Learning. CURL extracts high-level features from raw pixels using contrastive learning and …

Dota 2 with large scale deep reinforcement learning

C Berner, G Brockman, B Chan, V Cheung… - arxiv preprint arxiv …, 2019 - arxiv.org
On April 13th, 2019, OpenAI Five became the first AI system to defeat the world champions
at an esports game. The game of Dota 2 presents novel challenges for AI systems such as …