A survey on hypergraph representation learning

A Antelmi, G Cordasco, M Polato, V Scarano… - ACM Computing …, 2023 - dl.acm.org
Hypergraphs have attracted increasing attention in recent years thanks to their flexibility in
naturally modeling a broad range of systems where high-order relationships exist among …

A comprehensive survey on deep graph representation learning

W Ju, Z Fang, Y Gu, Z Liu, Q Long, Z Qiao, Y Qin… - Neural Networks, 2024 - Elsevier
Graph representation learning aims to effectively encode high-dimensional sparse graph-
structured data into low-dimensional dense vectors, which is a fundamental task that has …

Simple and efficient heterogeneous graph neural network

X Yang, M Yan, S Pan, X Ye, D Fan - … of the AAAI conference on artificial …, 2023 - ojs.aaai.org
Heterogeneous graph neural networks (HGNNs) have the powerful capability to embed rich
structural and semantic information of a heterogeneous graph into node representations …

Beyond low-frequency information in graph convolutional networks

D Bo, X Wang, C Shi, H Shen - Proceedings of the AAAI conference on …, 2021 - ojs.aaai.org
Graph neural networks (GNNs) have been proven to be effective in various network-related
tasks. Most existing GNNs usually exploit the low-frequency signals of node features, which …

A survey on graph representation learning methods

S Khoshraftar, A An - ACM Transactions on Intelligent Systems and …, 2024 - dl.acm.org
Graph representation learning has been a very active research area in recent years. The
goal of graph representation learning is to generate graph representation vectors that …

A survey of graph neural networks for social recommender systems

K Sharma, YC Lee, S Nambi, A Salian, S Shah… - ACM Computing …, 2024 - dl.acm.org
Social recommender systems (SocialRS) simultaneously leverage the user-to-item
interactions as well as the user-to-user social relations for the task of generating item …

Heterogeneous graph masked autoencoders

Y Tian, K Dong, C Zhang, C Zhang… - Proceedings of the AAAI …, 2023 - ojs.aaai.org
Generative self-supervised learning (SSL), especially masked autoencoders, has become
one of the most exciting learning paradigms and has shown great potential in handling …

Heterogeneous graph structure learning for graph neural networks

J Zhao, X Wang, C Shi, B Hu, G Song… - Proceedings of the AAAI …, 2021 - ojs.aaai.org
Abstract Heterogeneous Graph Neural Networks (HGNNs) have drawn increasing attention
in recent years and achieved outstanding performance in many tasks. The success of the …

Heterogeneous graph neural networks analysis: a survey of techniques, evaluations and applications

R Bing, G Yuan, M Zhu, F Meng, H Ma… - Artificial Intelligence …, 2023 - Springer
Abstract Graph Neural Networks (GNNs) have achieved excellent performance of graph
representation learning and attracted plenty of attentions in recent years. Most of GNNs aim …

Applications and techniques of machine learning in cancer classification: a systematic review

A Yaqoob, R Musheer Aziz, NK Verma - Human-centric intelligent systems, 2023 - Springer
The domain of Machine learning has experienced Substantial advancement and
development. Recently, showcasing a Broad spectrum of uses like Computational …