Fairness in recommender systems: research landscape and future directions

Y Deldjoo, D Jannach, A Bellogin, A Difonzo… - User Modeling and User …, 2024 - Springer
Recommender systems can strongly influence which information we see online, eg, on
social media, and thus impact our beliefs, decisions, and actions. At the same time, these …

Multistakeholder recommendation: Survey and research directions

H Abdollahpouri, G Adomavicius, R Burke, I Guy… - User Modeling and User …, 2020 - Springer
Recommender systems provide personalized information access to users of Internet
services from social networks to e-commerce to media and entertainment. As is appropriate …

Causal intervention for leveraging popularity bias in recommendation

Y Zhang, F Feng, X He, T Wei, C Song, G Ling… - Proceedings of the 44th …, 2021 - dl.acm.org
Recommender system usually faces popularity bias issues: from the data perspective, items
exhibit uneven (usually long-tail) distribution on the interaction frequency; from the method …

Fairness in recommendation: Foundations, methods, and applications

Y Li, H Chen, S Xu, Y Ge, J Tan, S Liu… - ACM Transactions on …, 2023 - dl.acm.org
As one of the most pervasive applications of machine learning, recommender systems are
playing an important role on assisting human decision-making. The satisfaction of users and …

Model-agnostic counterfactual reasoning for eliminating popularity bias in recommender system

T Wei, F Feng, J Chen, Z Wu, J Yi, X He - Proceedings of the 27th ACM …, 2021 - dl.acm.org
The general aim of the recommender system is to provide personalized suggestions to
users, which is opposed to suggesting popular items. However, the normal training …

User-oriented fairness in recommendation

Y Li, H Chen, Z Fu, Y Ge, Y Zhang - Proceedings of the web conference …, 2021 - dl.acm.org
As a highly data-driven application, recommender systems could be affected by data bias,
resulting in unfair results for different data groups, which could be a reason that affects the …

Cpfair: Personalized consumer and producer fairness re-ranking for recommender systems

M Naghiaei, HA Rahmani, Y Deldjoo - Proceedings of the 45th …, 2022 - dl.acm.org
Recently, there has been a rising awareness that when machine learning (ML) algorithms
are used to automate choices, they may treat/affect individuals unfairly, with legal, ethical, or …

Towards personalized fairness based on causal notion

Y Li, H Chen, S Xu, Y Ge, Y Zhang - … of the 44th International ACM SIGIR …, 2021 - dl.acm.org
Recommender systems are gaining increasing and critical impacts on human and society
since a growing number of users use them for information seeking and decision making …

The unfairness of popularity bias in recommendation

H Abdollahpouri, M Mansoury, R Burke… - arxiv preprint arxiv …, 2019 - arxiv.org
Recommender systems are known to suffer from the popularity bias problem: popular (ie
frequently rated) items get a lot of exposure while less popular ones are under-represented …

Elliot: A comprehensive and rigorous framework for reproducible recommender systems evaluation

VW Anelli, A Bellogín, A Ferrara, D Malitesta… - Proceedings of the 44th …, 2021 - dl.acm.org
Recommender Systems have shown to be an effective way to alleviate the over-choice
problem and provide accurate and tailored recommendations. However, the impressive …