Design of functional and sustainable polymers assisted by artificial intelligence

H Tran, R Gurnani, C Kim, G Pilania, HK Kwon… - Nature Reviews …, 2024 - nature.com
Artificial intelligence (AI)-based methods continue to make inroads into accelerated
materials design and development. Here, we review AI-enabled advances made in the …

Applied machine learning as a driver for polymeric biomaterials design

SM McDonald, EK Augustine, Q Lanners… - Nature …, 2023 - nature.com
Polymers are ubiquitous to almost every aspect of modern society and their use in medical
products is similarly pervasive. Despite this, the diversity in commercial polymers used in …

Deep learning in mechanical metamaterials: from prediction and generation to inverse design

X Zheng, X Zhang, TT Chen, I Watanabe - Advanced Materials, 2023 - Wiley Online Library
Mechanical metamaterials are meticulously designed structures with exceptional
mechanical properties determined by their microstructures and constituent materials …

Toward autonomous laboratories: Convergence of artificial intelligence and experimental automation

Y **e, K Sattari, C Zhang, J Lin - Progress in Materials Science, 2023 - Elsevier
The ever-increasing demand for novel materials with superior properties inspires retrofitting
traditional research paradigms in the era of artificial intelligence and automation. An …

Emerging trends in machine learning: a polymer perspective

TB Martin, DJ Audus - ACS Polymers Au, 2023 - ACS Publications
In the last five years, there has been tremendous growth in machine learning and artificial
intelligence as applied to polymer science. Here, we highlight the unique challenges …

New opportunity: machine learning for polymer materials design and discovery

P Xu, H Chen, M Li, W Lu - Advanced Theory and Simulations, 2022 - Wiley Online Library
Under the guidance of the material genome initiative (MGI), the use of data‐driven methods
to discover new materials has become an innovation of materials science. The polymer …

Artificial intelligence driven design of catalysts and materials for ring opening polymerization using a domain-specific language

NH Park, M Manica, J Born, JL Hedrick… - Nature …, 2023 - nature.com
Advances in machine learning (ML) and automated experimentation are poised to vastly
accelerate research in polymer science. Data representation is a critical aspect for enabling …

Data-driven methods for accelerating polymer design

TK Patra - ACS Polymers Au, 2021 - ACS Publications
Optimal design of polymers is a challenging task due to their enormous chemical and
configurational space. Recent advances in computations, machine learning, and increasing …

Machine learning for polymeric materials: an introduction

MM Cencer, JS Moore, RS Assary - Polymer International, 2022 - Wiley Online Library
Polymers are incredibly versatile materials and have become ubiquitous. Increasingly,
researchers are using data science and polymer informatics to design new materials and …

Inverse design of materials by machine learning

J Wang, Y Wang, Y Chen - Materials, 2022 - mdpi.com
It is safe to say that every invention that has changed the world has depended on materials.
At present, the demand for the development of materials and the invention or design of new …