An experiment-based review of low-light image enhancement methods

W Wang, X Wu, X Yuan, Z Gao - Ieee Access, 2020 - ieeexplore.ieee.org
Images captured under poor illumination conditions often exhibit characteristics such as low
brightness, low contrast, a narrow gray range, and color distortion, as well as considerable …

Comparing deep learning models for low-light natural scene image enhancement and their impact on object detection and classification: Overview, empirical …

R Al Sobbahi, J Tekli - Signal Processing: Image Communication, 2022 - Elsevier
Low-light image (LLI) enhancement is an important image processing task that aims at
improving the illumination of images taken under low-light conditions. Recently, a …

Retinexformer: One-stage retinex-based transformer for low-light image enhancement

Y Cai, H Bian, J Lin, H Wang… - Proceedings of the …, 2023 - openaccess.thecvf.com
When enhancing low-light images, many deep learning algorithms are based on the Retinex
theory. However, the Retinex model does not consider the corruptions hidden in the dark or …

Ultra-high-definition low-light image enhancement: A benchmark and transformer-based method

T Wang, K Zhang, T Shen, W Luo, B Stenger… - Proceedings of the AAAI …, 2023 - ojs.aaai.org
As the quality of optical sensors improves, there is a need for processing large-scale
images. In particular, the ability of devices to capture ultra-high definition (UHD) images and …

Learning a simple low-light image enhancer from paired low-light instances

Z Fu, Y Yang, X Tu, Y Huang… - Proceedings of the …, 2023 - openaccess.thecvf.com
Abstract Low-light Image Enhancement (LIE) aims at improving contrast and restoring
details for images captured in low-light conditions. Most of the previous LIE algorithms adjust …

Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement

W Wu, J Weng, P Zhang, X Wang… - Proceedings of the …, 2022 - openaccess.thecvf.com
Retinex model-based methods have shown to be effective in layer-wise manipulation with
well-designed priors for low-light image enhancement. However, the commonly used hand …

Low-light image enhancement with wavelet-based diffusion models

H Jiang, A Luo, H Fan, S Han, S Liu - ACM Transactions on Graphics …, 2023 - dl.acm.org
Diffusion models have achieved promising results in image restoration tasks, yet suffer from
time-consuming, excessive computational resource consumption, and unstable restoration …

Snr-aware low-light image enhancement

X Xu, R Wang, CW Fu, J Jia - Proceedings of the IEEE/CVF …, 2022 - openaccess.thecvf.com
This paper presents a new solution for low-light image enhancement by collectively
exploiting Signal-to-Noise-Ratio-aware transformers and convolutional models to …

Toward fast, flexible, and robust low-light image enhancement

L Ma, T Ma, R Liu, X Fan, Z Luo - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Existing low-light image enhancement techniques are mostly not only difficult to deal with
both visual quality and computational efficiency but also commonly invalid in unknown …

Iterative prompt learning for unsupervised backlit image enhancement

Z Liang, C Li, S Zhou, R Feng… - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
We propose a novel unsupervised backlit image enhancement method, abbreviated as CLIP-
LIT, by exploring the potential of Contrastive Language-Image Pre-Training (CLIP) for pixel …