Conversational agents in therapeutic interventions for neurodevelopmental disorders: a survey

F Catania, M Spitale, F Garzotto - ACM Computing Surveys, 2023 - dl.acm.org
Neurodevelopmental Disorders (NDD) are a group of conditions with onset in the
developmental period characterized by deficits in the cognitive and social areas …

Transformer models for text-based emotion detection: a review of BERT-based approaches

FA Acheampong, H Nunoo-Mensah… - Artificial Intelligence …, 2021 - Springer
We cannot overemphasize the essence of contextual information in most natural language
processing (NLP) applications. The extraction of context yields significant improvements in …

H2o: Heavy-hitter oracle for efficient generative inference of large language models

Z Zhang, Y Sheng, T Zhou, T Chen… - Advances in …, 2023 - proceedings.neurips.cc
Abstract Large Language Models (LLMs), despite their recent impressive accomplishments,
are notably cost-prohibitive to deploy, particularly for applications involving long-content …

Distilling step-by-step! outperforming larger language models with less training data and smaller model sizes

CY Hsieh, CL Li, CK Yeh, H Nakhost, Y Fujii… - arxiv preprint arxiv …, 2023 - arxiv.org
Deploying large language models (LLMs) is challenging because they are memory
inefficient and compute-intensive for practical applications. In reaction, researchers train …

Pretraining language models with human preferences

T Korbak, K Shi, A Chen, RV Bhalerao… - International …, 2023 - proceedings.mlr.press
Abstract Language models (LMs) are pretrained to imitate text from large and diverse
datasets that contain content that would violate human preferences if generated by an LM …

Deja vu: Contextual sparsity for efficient llms at inference time

Z Liu, J Wang, T Dao, T Zhou, B Yuan… - International …, 2023 - proceedings.mlr.press
Large language models (LLMs) with hundreds of billions of parameters have sparked a new
wave of exciting AI applications. However, they are computationally expensive at inference …

Communication-efficient federated learning via knowledge distillation

C Wu, F Wu, L Lyu, Y Huang, X **e - Nature communications, 2022 - nature.com
Federated learning is a privacy-preserving machine learning technique to train intelligent
models from decentralized data, which enables exploiting private data by communicating …

Knowledge distillation: A survey

J Gou, B Yu, SJ Maybank, D Tao - International Journal of Computer Vision, 2021 - Springer
In recent years, deep neural networks have been successful in both industry and academia,
especially for computer vision tasks. The great success of deep learning is mainly due to its …

[LIBRO][B] Pretrained transformers for text ranking: Bert and beyond

J Lin, R Nogueira, A Yates - 2022 - books.google.com
The goal of text ranking is to generate an ordered list of texts retrieved from a corpus in
response to a query. Although the most common formulation of text ranking is search …

Deep learning--based text classification: a comprehensive review

S Minaee, N Kalchbrenner, E Cambria… - ACM computing …, 2021 - dl.acm.org
Deep learning--based models have surpassed classical machine learning--based
approaches in various text classification tasks, including sentiment analysis, news …