[HTML][HTML] A comparison review of transfer learning and self-supervised learning: Definitions, applications, advantages and limitations

Z Zhao, L Alzubaidi, J Zhang, Y Duan, Y Gu - Expert Systems with …, 2024 - Elsevier
Deep learning has emerged as a powerful tool in various domains, revolutionising machine
learning research. However, one persistent challenge is the scarcity of labelled training …

Domain adaptation for medical image analysis: a survey

H Guan, M Liu - IEEE Transactions on Biomedical Engineering, 2021 - ieeexplore.ieee.org
Machine learning techniques used in computer-aided medical image analysis usually suffer
from the domain shift problem caused by different distributions between source/reference …

Deep visual domain adaptation: A survey

M Wang, W Deng - Neurocomputing, 2018 - Elsevier
Deep domain adaptation has emerged as a new learning technique to address the lack of
massive amounts of labeled data. Compared to conventional methods, which learn shared …

Intelligent fault diagnosis of machines with small & imbalanced data: A state-of-the-art review and possible extensions

T Zhang, J Chen, F Li, K Zhang, H Lv, S He, E Xu - ISA transactions, 2022 - Elsevier
The research on intelligent fault diagnosis has yielded remarkable achievements based on
artificial intelligence-related technologies. In engineering scenarios, machines usually work …

A decade survey of transfer learning (2010–2020)

S Niu, Y Liu, J Wang, H Song - IEEE Transactions on Artificial …, 2020 - ieeexplore.ieee.org
Transfer learning (TL) has been successfully applied to many real-world problems that
traditional machine learning (ML) cannot handle, such as image processing, speech …

Transfer learning algorithms for bearing remaining useful life prediction: A comprehensive review from an industrial application perspective

J Chen, R Huang, Z Chen, W Mao, W Li - Mechanical Systems and Signal …, 2023 - Elsevier
Accurate remaining useful life (RUL) prediction for rolling bearings encounters many
challenges such as complex degradation processes, varying working conditions, and …

Center-based transfer feature learning with classifier adaptation for surface defect recognition

Y Shi, L Li, J Yang, Y Wang, S Hao - Mechanical Systems and Signal …, 2023 - Elsevier
Surface defect recognition using Deep Learning based computer vision techniques is an
important task in industrial manufacturing. However, surface images have different …

A survey on negative transfer

W Zhang, L Deng, L Zhang, D Wu - IEEE/CAA Journal of …, 2022 - ieeexplore.ieee.org
Transfer learning (TL) utilizes data or knowledge from one or more source domains to
facilitate learning in a target domain. It is particularly useful when the target domain has very …

Hsva: Hierarchical semantic-visual adaptation for zero-shot learning

S Chen, G **e, Y Liu, Q Peng, B Sun… - Advances in …, 2021 - proceedings.neurips.cc
Zero-shot learning (ZSL) tackles the unseen class recognition problem, transferring
semantic knowledge from seen classes to unseen ones. Typically, to guarantee desirable …

Transfer learning with dynamic distribution adaptation

J Wang, Y Chen, W Feng, H Yu, M Huang… - ACM Transactions on …, 2020 - dl.acm.org
Transfer learning aims to learn robust classifiers for the target domain by leveraging
knowledge from a source domain. Since the source and the target domains are usually from …