Towards spike-based machine intelligence with neuromorphic computing

K Roy, A Jaiswal, P Panda - Nature, 2019 - nature.com
Guided by brain-like 'spiking'computational frameworks, neuromorphic computing—brain-
inspired computing for machine intelligence—promises to realize artificial intelligence while …

Hardware implementation of memristor-based artificial neural networks

F Aguirre, A Sebastian, M Le Gallo, W Song… - Nature …, 2024 - nature.com
Artificial Intelligence (AI) is currently experiencing a bloom driven by deep learning (DL)
techniques, which rely on networks of connected simple computing units operating in …

The future of electronics based on memristive systems

MA Zidan, JP Strachan, WD Lu - Nature electronics, 2018 - nature.com
A memristor is a resistive device with an inherent memory. The theoretical concept of a
memristor was connected to physically measured devices in 2008 and since then there has …

Roadmap on emerging hardware and technology for machine learning

K Berggren, Q **a, KK Likharev, DB Strukov… - …, 2020 - iopscience.iop.org
Recent progress in artificial intelligence is largely attributed to the rapid development of
machine learning, especially in the algorithm and neural network models. However, it is the …

Metrology for the next generation of semiconductor devices

NG Orji, M Badaroglu, BM Barnes, C Beitia… - Nature …, 2018 - nature.com
The semiconductor industry continues to produce ever smaller devices that are ever more
complex in shape and contain ever more types of materials. The ultimate sizes and …

Research progress on memristor: From synapses to computing systems

X Yang, B Taylor, A Wu, Y Chen… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
As the limits of transistor technology are approached, feature size in integrated circuit
transistors has been reduced very near to the minimum physically-realizable channel length …

The building blocks of a brain-inspired computer

JD Kendall, S Kumar - Applied Physics Reviews, 2020 - pubs.aip.org
Computers have undergone tremendous improvements in performance over the last 60
years, but those improvements have significantly slowed down over the last decade, owing …

[HTML][HTML] Pathways to efficient neuromorphic computing with non-volatile memory technologies

I Chakraborty, A Jaiswal, AK Saha, SK Gupta… - Applied Physics …, 2020 - pubs.aip.org
Historically, memory technologies have been evaluated based on their storage density, cost,
and latencies. Beyond these metrics, the need to enable smarter and intelligent computing …

A survey of ReRAM-based architectures for processing-in-memory and neural networks

S Mittal - Machine learning and knowledge extraction, 2018 - mdpi.com
As data movement operations and power-budget become key bottlenecks in the design of
computing systems, the interest in unconventional approaches such as processing-in …

8T SRAM cell as a multibit dot-product engine for beyond von Neumann computing

A Jaiswal, I Chakraborty, A Agrawal… - IEEE Transactions on …, 2019 - ieeexplore.ieee.org
Large-scale digital computing almost exclusively relies on the von Neumann architecture,
which comprises separate units for storage and computations. The energy-expensive …