Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Advances in hyperspectral image and signal processing: A comprehensive overview of the state of the art
Recent advances in airborne and spaceborne hyperspectral imaging technology have
provided end users with rich spectral, spatial, and temporal information. They have made a …
provided end users with rich spectral, spatial, and temporal information. They have made a …
Graph-based semi-supervised learning: A review
Y Chong, Y Ding, Q Yan, S Pan - Neurocomputing, 2020 - Elsevier
Considering the labeled samples may be difficult to obtain because they require human
annotators, special devices, or expensive and slow experiments. Semi-supervised learning …
annotators, special devices, or expensive and slow experiments. Semi-supervised learning …
Interpretable hyperspectral artificial intelligence: When nonconvex modeling meets hyperspectral remote sensing
Hyperspectral (HS) imaging, also known as image spectrometry, is a landmark technique in
geoscience and remote sensing (RS). In the past decade, enormous efforts have been made …
geoscience and remote sensing (RS). In the past decade, enormous efforts have been made …
Hyperspectral unmixing using transformer network
Transformers have intrigued the vision research community with their state-of-the-art
performance in natural language processing. With their superior performance, transformers …
performance in natural language processing. With their superior performance, transformers …
Total-variation-regularized low-rank matrix factorization for hyperspectral image restoration
In this paper, we present a spatial spectral hyperspectral image (HSI) mixed-noise removal
method named total variation (TV)-regularized low-rank matrix factorization (LRTV). In …
method named total variation (TV)-regularized low-rank matrix factorization (LRTV). In …
Convolutional autoencoder for spectral–spatial hyperspectral unmixing
Blind hyperspectral unmixing is the process of expressing the measured spectrum of a pixel
as a combination of a set of spectral signatures called endmembers and simultaneously …
as a combination of a set of spectral signatures called endmembers and simultaneously …
Hyperspectral remote sensing data analysis and future challenges
Hyperspectral remote sensing technology has advanced significantly in the past two
decades. Current sensors onboard airborne and spaceborne platforms cover large areas of …
decades. Current sensors onboard airborne and spaceborne platforms cover large areas of …
Spectral variability in hyperspectral data unmixing: A comprehensive review
The spectral signatures of the materials contained in hyperspectral images, also called
endmembers (EMs), can be significantly affected by variations in atmospheric, illumination …
endmembers (EMs), can be significantly affected by variations in atmospheric, illumination …
A review of nonlinear hyperspectral unmixing methods
In hyperspectral unmixing, the prevalent model used is the linear mixing model, and a large
variety of techniques based on this model has been proposed to obtain endmembers and …
variety of techniques based on this model has been proposed to obtain endmembers and …
Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches
Imaging spectrometers measure electromagnetic energy scattered in their instantaneous
field view in hundreds or thousands of spectral channels with higher spectral resolution than …
field view in hundreds or thousands of spectral channels with higher spectral resolution than …