[HTML][HTML] The emergence of AI-based wearable sensors for digital health technology: a review

S Shajari, K Kuruvinashetti, A Komeili, U Sundararaj - Sensors, 2023 - mdpi.com
Disease diagnosis and monitoring using conventional healthcare services is typically
expensive and has limited accuracy. Wearable health technology based on flexible …

Artificial intelligence in neuro-oncology: advances and challenges in brain tumor diagnosis, prognosis, and precision treatment

S Khalighi, K Reddy, A Midya, KB Pandav… - NPJ precision …, 2024 - nature.com
This review delves into the most recent advancements in applying artificial intelligence (AI)
within neuro-oncology, specifically emphasizing work on gliomas, a class of brain tumors …

Brain tumor segmentation based on the fusion of deep semantics and edge information in multimodal MRI

Z Zhu, X He, G Qi, Y Li, B Cong, Y Liu - Information Fusion, 2023 - Elsevier
Brain tumor segmentation in multimodal MRI has great significance in clinical diagnosis and
treatment. The utilization of multimodal information plays a crucial role in brain tumor …

Brain tumor detection based on deep learning approaches and magnetic resonance imaging

AB Abdusalomov, M Mukhiddinov, TK Whangbo - Cancers, 2023 - mdpi.com
Simple Summary In this research, we addressed the challenging task of brain tumor
detection in MRI scans using a large collection of brain tumor images. We demonstrated that …

Universeg: Universal medical image segmentation

VI Butoi, JJG Ortiz, T Ma, MR Sabuncu… - Proceedings of the …, 2023 - openaccess.thecvf.com
While deep learning models have become the predominant method for medical image
segmentation, they are typically not capable of generalizing to unseen segmentation tasks …

Federated benchmarking of medical artificial intelligence with MedPerf

A Karargyris, R Umeton, MJ Sheller… - Nature machine …, 2023 - nature.com
Medical artificial intelligence (AI) has tremendous potential to advance healthcare by
supporting and contributing to the evidence-based practice of medicine, personalizing …

Swin unetr: Swin transformers for semantic segmentation of brain tumors in mri images

A Hatamizadeh, V Nath, Y Tang, D Yang… - International MICCAI …, 2021 - Springer
Semantic segmentation of brain tumors is a fundamental medical image analysis task
involving multiple MRI imaging modalities that can assist clinicians in diagnosing the patient …

Federated learning enables big data for rare cancer boundary detection

S Pati, U Baid, B Edwards, M Sheller, SH Wang… - Nature …, 2022 - nature.com
Although machine learning (ML) has shown promise across disciplines, out-of-sample
generalizability is concerning. This is currently addressed by sharing multi-site data, but …

The rsna-asnr-miccai brats 2021 benchmark on brain tumor segmentation and radiogenomic classification

U Baid, S Ghodasara, S Mohan, M Bilello… - arxiv preprint arxiv …, 2021 - arxiv.org
The BraTS 2021 challenge celebrates its 10th anniversary and is jointly organized by the
Radiological Society of North America (RSNA), the American Society of Neuroradiology …

U-kan makes strong backbone for medical image segmentation and generation

C Li, X Liu, W Li, C Wang, H Liu, Y Liu, Z Chen… - arxiv preprint arxiv …, 2024 - arxiv.org
U-Net has become a cornerstone in various visual applications such as image segmentation
and diffusion probability models. While numerous innovative designs and improvements …